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Abstract

We calculate the electric conductivity of the Lieb lattice. In this system the low
energy excitations are S=1 fermions, characterised by a flat band and a Dirac
cone. The conductivity calculation is done in the framework of the Landauer-
Bütikker approach. Employing the EQuUs code the transmission coefficient is
calculated through lattice Green’s functions. Investigating the effect of disorder in
the sample we show that the conductivity scales with one parameter for different
impurities and system sizes.
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1 Introduction

1.1 Massless Dirac fermions in 2D systems

1.1.1 S=1/2

Since it’s isolation in 2004 [1] and the Nobel prize in Physics in 2010 (Andre
Geim and Konstantin Novoselov) graphene has a largely growing reputation.
This statement is supported by the fact that the article describing the discov-
ery of graphene [1] has been cited by more than 31000 articles, this means 7
citations per day. Graphene is a two dimensional allotrope of carbon, where
the carbon atoms form a honeycomb lattice. Many of it’s characteristics outrun
most of the materials used today (high tensile strength, good electric and heat
conduction etc.). Because of these characteristics and their possible applications
(electronic devices, quantum dots, super capacitors, etc.) it is highly researched.
In this work graphene will be discussed in the framework of tight binding approx-
imation. This kind of description dates back to 1947 [?], where it appeared as a
building block for graphite.

From the point of view of electronic transport. A very interesting property of
graphene is that at low excitation energies the effective Hamiltonian can be de-
scribed as pseudo-spin (S = 1/2) Dirac-system. This means that the dispersion
relation will be a Dirac-cone with no dispersion. This causes strange behaviours
in the transport properties, e.g. the Klein paradox.
it is possible to form many other lattices that have a Dirac-cone in the dispersion
relation. see [2]

1.1.2 S=1

It is possible to make a pseudo-spin S = 1 system too, if we have three inner
degrees of freedom in the unit cell. Liebről Dice-ról T3 Dirac rendszer meg-
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Chapter 1 Introduction

(a) Graphene (b) α-graphyne

Figure 1.1

valósíthatóság miért érdekes

(a) Lieb lattice (b) Dice lattice

Figure 1.2

1.2 Lieb lattice

[3]

1.3 Landauer-Büttiker formalism

[4] [5] [6]
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Chapter 1 Introduction

1.4 Scaling properties in disordered systems

Skálázós cikkek [7]
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2 Tight-binding model of the
Lieb lattice

2.1 Lieb lattice structure

The structure of the Lieb lattice can be seen on figure 2.1. The lattice plane is
orthogonal to the z direction, the x and y axes are visible on the figure.

a1

a2

AB

C

y

x

Figure 2.1: The structure of the Lieb lattice. The figure shows the
primitive vectors (ai) of the square lattice. The three type of atoms
in the unit cell are called A (red), B (green) and C (blue).

The Lieb lattice can be described as a square Bravais lattice, where in every unit
cell there are three atoms. On the figure these three type of atoms in the unit
cell (forming three sublattices) are called A (red), B (green) and C (blue).
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Chapter 2 Tight-binding model of the Lieb lattice

The Bravais lattice is formed with the following primitive vectors:

a1 =

(
1

0

)
, a2 =

(
0

1

)
. (2.1)

where the primitive vectors are measured in the unit of the lattice constant (a).
From now on every length scale will be measured in this unit. We can define the
reciprocal primitive vectors (bi) with the following relation:

aibj = 2πδij . (2.2)

Using the definition of the primitive vectors (2.1):

b1 = 2π

(
1

0

)
, b2 = 2π

(
0

1

)
. (2.3)

The square Bravais lattice of the Lieb lattice and the reciprocal lattice with the
Brillouin zone (BZ) are visible on figure 2.2.

a1

a2

y

x

b1

b2

ΓX

X’M
ky

kx

Figure 2.2: The Bravais lattice (blue) of the Lieb lattice with primitive
vectors ai. And reciprocal lattice (red) with primitive vectors bi. The
shaded red square is the BZ. The figure shows the high symmetry
points of the BZ (Γ, X, X’, M).
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Chapter 2 Tight-binding model of the Lieb lattice

2.2 Hamiltonian of an infinite Lieb lattice

In this section we discuss the Hamiltonian of the Lieb lattice in the tight-binding
(TB) approximation considering nearest neighbor hoppings. We can read about
a general description for multiband TB system in the appendix A. For the Hamil-
tonian we use the followings: in the Lieb lattice there are three atoms per unit
cell, on every site we consider one Wannier-state (one atomic orbital) and every
nearest neighbor hopping parameter (γ) is real and has the same value for each
neighbor. Since every pair contains an atom from the B sublattice we can write
the second quantized Hamiltonian of this system the following way in Wannier
representation:

H = −
∑
〈i,j〉ba,σ

γ(b†iσai−jσ + h.c.)−
∑
〈i,j〉bc,σ

γ(b†iσci−jσ + h.c.) , (2.4)

where the sums goes over every nearest neighbor (〈i, j〉ba are the unit cells where
there are two neighboring A and B atoms). aiσ, biσ and ciσ are the annihilation
operators of the Wannier-states in the i-th unit cell on the A, B or C sublattices
having σ spin state. Applying Bloch’s theorem we know that the Hamiltonian
will be diagonal in the quasimomentum (k). In systems were there are multiple
atoms in a unit cell the Bloch representation is not unique [8]. For practical
purposes the following representation will be used for the creation/annihilation
operators of Bloch states:

akσ =
1√
N

∑
i

e−ikR
A
i aiσ , bkσ =

1√
N

∑
i

e−ikR
B
i biσ , ckσ =

1√
N

∑
i

e−ikR
C
i ciσ ,

(2.5)

where R
A/B/C
i is the vector pointing to the A/B/C atom in the i-th unit cell.

The normalization is chosen so to assure the normalization of the Bloch states
(N is the number of unit cells). The inverse relations have the following form:

aiσ =
1√
N

∑
k

eikR
A
i akσ , biσ =

1√
N

∑
k

eikR
B
i bkσ , ciσ =

1√
N

∑
k

eikR
C
i ckσ .

(2.6)
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Chapter 2 Tight-binding model of the Lieb lattice

Substituting these in the Hamiltonian we get the following (to follow the calcu-
lations see appendix A where a more general case is discussed):

H = −
∑
k,σ

2γ

[
cos

(
kx
2

)
b†kσakσ + cos

(
ky
2

)
b†kσckσ + h.c.

]
. (2.7)

Using the following definitions:

H(k) := −2γ

 0 cos (kx/2) 0

cos (kx/2) 0 cos (ky/2)

0 cos (ky/2) 0

 , akσ :=

akσbkσ
ckσ

 , (2.8)

the Hamiltonian can be expressed as:

H =
∑
k,σ

a†kσH(k)akσ =
∑
k,σ

3∑
`,m=1

a
(kσ)†
` H`m(k)a(kσ)m . (2.9)

2.2.1 Dispersion relation

The eigenvalue problem now is reduced to the eigenvalue problem of the 3 × 3

H(k) Hamiltonian matrix. This can be solved analytically and the dispersion
relation is the following:

ε0(k) = 0 ,

ε±(k) = ±2γ

√
cos2

(
kx
2

)
+ cos2

(
ky
2

)
. (2.10)

There are 3 bands, two bands are symmetric to the zero plane, and the third is
a constant zero band, also called flat band. We can see the dispersion relation of
figure 2.3 evaluated on lines connecting high symmetry points and on figure 2.4
as a 3d surface plot. Since there are three atoms in every unit cell we have 3N

electrons. Every band has 2N states with the spin degree of freedom. This means
that the lower band is fully occupied and the flat band is half full. Also the Fermi
energy is at 0. The bandwidth of the upper or lower band is ε±(0) = 2

√
2γ. The

two symmetric bands touch each other at the corner of the BZ, at the M point.
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Chapter 2 Tight-binding model of the Lieb lattice

-3

-2

-1

0

1

2

3

Γ X M Γ

ε(k)

γ

|k|
Figure 2.3: Dispersion relation of the Lieb lattice on lines connecting
high symmetry points. The path shown here are straight lines going
over Γ−X −M − Γ. The |k| on the x axis goes from 0 to

√
2π until

the M point and backwards until the Γ point.

-π
0

πkx -π
0

π

ky

-2

0

2

ε

γo

Figure 2.4: Dispersion relation of the Lieb lattice inside the BZ.

The emergence of the flat band can be understood from a symmetry point of
view. The H(k) Hamiltonian matrix has a chiral symmetry. We can define a
chirality operator as:

C =

1 0 0

0 −1 0

0 0 1

 . (2.11)
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Chapter 2 Tight-binding model of the Lieb lattice

We can easily show that this operator anticommutes with the Hamiltonian:

H(k)C + CH(k) = 0 . (2.12)

This has a very important consequence on the dispersion relation. If there is
an eigenvector v with energy E then Cv is also an eigenvector with energy −E.
This means that the dispersion relation must be symmetric to the zero plane.
And since we have a 3× 3 matrix there must be three bands which can only be
symmetric if one of them is a flat band. Near the M point the dispersion relation
takes the form of a cone the so called Dirac cone. Let’s introduce the following
wavenumber:

p = k− (π, π) . (2.13)

If we are close to the M point we can expand the dispersion relation as:

ε±(p) = ±2γ

√
cos2

(
px + π

2

)
+ cos2

(
py + π

2

)
=

= ±2γ

√
sin2

(px
2

)
+ sin2

(py
2

)
≈ ±γ

√
p2x + p2y = ±γ|p| (2.14)

As we can see this is a dispersionless cone, with constant group velocity. We can
see this on figure 2.5. This is something similar to what we can find in graphene,
but the important difference is the flat band that is also present in this case.

π
kx

π
ky

-2

0

2

ε

γo

Figure 2.5: Dispersion relation of the Lieb lattice near the M point.
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Chapter 2 Tight-binding model of the Lieb lattice

2.2.2 Effective S = 1 Dirac Hamiltonian

For low energy excitations we can approximate the (2.9) Hamiltonian to the first
order of the previously defined p vector (2.13) as:

H(p) = γ

 0 px 0

px 0 py

0 py 0

 . (2.15)

We can express this Hamiltonian as

H(p) = γ
∑
α=x,y

S̃αpα , (2.16)

where the S̃α are defined as:

S̃x :=

0 1 0

1 0 0

0 0 0

 S̃y :=

0 0 0

0 0 1

0 1 0

 S̃z :=

0 0 −i
0 0 0

i 0 0

 . (2.17)

These matrices all have eigenvalues −1, 0, 1 and also they satisfy the following
commutation relations:

[S̃α, S̃β] = i
∑
γ

εαβγS̃γ , (2.18)

where εαβγ is the Levi-Civita symbol. This means that the introduced matrices
are S = 1 representations of the Lie algebra of the SU(2) group. This means
that they can be used to describe an S = 1 spin. We can also notice that these
matrices are three of the eight Gell-Mann matrices. With the usual notation:
S̃x = λ1, S̃y = λ6, S̃z = λ5. Usually this is not the representation we use for
S = 1 spins, but the one where Sz is diagonal. This representation is unitarily
equivalent and can be obtained the following way:

Si = US̃iU
† U =

1√
2

i 0 1

0
√

2i 0

i 0 −1

 . (2.19)
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Chapter 2 Tight-binding model of the Lieb lattice

With this we get the usual S = 1 representation:

Sx =
1√
2

0 1 0

1 0 1

0 1 0

 Sy =
1√
2

0 −i 0

i 0 −i
0 i 0

 Sz =

1 0 0

0 0 0

0 0 −1

 . (2.20)

In this new representation obtained with U the low energy Hamiltonian can be
expressed as:

H(p) = γ
∑
α=x,y

Sαpα . (2.21)

Since this spin has nothing to do with the actual spin of the electron in the system
it is usually called pseudo-spin. This Hamiltonian can be used to make a contin-
uum model for the Lieb lattice, where p is thought of as a normal momentum
and not as a quasi momentum. This way we obtained a Dirac-Weyl system with
S = 1 pseudo-spin.

2.3 Hamiltonian of an infinite Lieb lattice strip

After discussing the infinite Lieb lattice we will go on with an infinite Lieb lattice
strip. This means that the lattice is infinite in the x direction and has a finite W
width. W will be the number of unit cells in the y direction. Depending on how
we stop at the edge of the strip we can get many different boundary conditions.
We can see some examples on figure 2.6.

(a) (b) (c)

Figure 2.6: Different types of boundary conditions. Every strip is
infinite in the x direction and is W = 5 wide. (a) periodic bound-
ary condition (b) hanging boundary condition (c) closed boundary
condition.
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Chapter 2 Tight-binding model of the Lieb lattice

The basic boundary conditions we can choose are the followings. If we want to
get rid of the edge of the system we can choose the periodic boundary condition
as in (a). We can choose to cut the Lieb lattice with a straight line between the
C and B atoms of two neighboring cells and get hanging nodes as seen in (b). Or
we can cut between the B and C atoms of the same cell and get (c). Of course
we don’t necessarily have to cut with straight lines, but for the sake of simplicity
we will only discuss those cases.

Since now there is no translational symmetry in the y direction (at least in the (b)
and (c) conditions), the previous discussion used for the case of an infinite Lieb
lattice can’t be used. It is useful to go back to the Wannier representation and
construct the one particle Hamiltonian. We can think of the Hamiltonian as a
linear chain, where every node has multiple degrees of freedom. The Hamiltonian
can be expressed as:

Ĥ =



H0 H1 0 0 . . .

H†1 H0 H1 0 . . .

0 H†1 H0 H1 . . .

0 0 H†1 H0 . . .
...

...
...

... . . .


, (2.22)

where H0 and H1 are matrices. We can see on figure 2.7 how the linear chain is
constructed for a simple example.

H1 H1 H1 H1 H1 H1 H1
H0 H0 H0 H0 H0 H0

Figure 2.7: The figure shows the structure of a Lieb lattice strip
(W=1 and closed boundary condition is used). The blue parts are
described by H0 and the red connections between the blue parts are
described by H1.
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Chapter 2 Tight-binding model of the Lieb lattice

The H0 and H1 Hamiltonians can be constructed using the following building
blocks:

h00 :=

 ε −γ 0

−γ ε −γ
0 −γ ε

 h01 :=

0 0 0

0 0 0

0 −γ 0

 h1 :=

0 −γ 0

0 0 0

0 0 0

 . (2.23)

Here h00 represents the Hamiltonian inside a unit cell, h01 represents the connec-
tion between a unit cell and the unit cell above, and h1 represent the connection
between a unit cell and the cell right to it. The γ hopping parameter and ε

on-site potential can be chosen arbitrarily. We will set the energy scale using γ,
so every energy is measured in the units of γ thus γ = 1. Also we can set the
Fermi-energy to 0 with taking ε = 0. So the actual matrices that we will use in
the later calculations take the following form:

h00 =

 0 −1 0

−1 0 −1

0 −1 0

 h01 =

0 0 0

0 0 0

0 −1 0

 h1 =

0 −1 0

0 0 0

0 0 0

 . (2.24)

With these the H0 and H1 can be constructed as:

H0 =



h00 h01 0 0 . . .

h†01 h00 h01 0 . . .

0 h†01 h00 h01 . . .

0 0 h†01 h00 . . .
...

...
...

... . . .


H1 =



h1 0 0 0 . . .

0 h1 0 0 . . .

0 0 h1 0 . . .

0 0 0 h1 . . .
...

...
...

... . . .


. (2.25)

Depending on the boundary condition H0 varies. In the (a) case H0 is a 3W×3W

matrix with a h†01 in the top right corner and a h01 in the bottom left corner. In
the (b) case we have the same but with zeros in those corners. In the (c) case
there are two extra rows and columns in H0. We can think of it as a W + 1 (b)
case where the last row and last column is eliminated. For a visual representation
of the (c) case presented on figure 2.6, see figure 2.8 where the non-zero hoppings
are shown with black squares. Also for the same case the full Ĥ Hamiltonian of
length L = 3 (where L is the number of unit cells in the x direction) can be seen
on figure 2.9.
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Chapter 2 Tight-binding model of the Lieb lattice

(a) H0 (b) H1

Figure 2.8: The matrices used to construct the strip. The black
squares represent -1 and the white region represents 0.

Figure 2.9: The Hamiltonian Ĥ for L = 3 W = 5. The black squares
represent -1 and the white region represents 0.
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Chapter 2 Tight-binding model of the Lieb lattice

2.3.1 Dispersion relation

First we want to solve the eigenvalue problem of the Ĥ Hamiltonian. The eigen-
vector Ψ can be divided in sections, and be described as a two-dimensional array
Ψn
p . Here n ∈ Z denotes the n-th H0 block (unit cell) and p ∈ {1, 2, ..,M} goes

over the degrees of freedom inside one site. The degrees of freedom M are ei-
ther 3W or 3W + 2 depending on the boundary condition. Respectively the Ĥ

Hamiltonian can be thought of as a four-dimensional array Hnm
pq where:

Hnm
pq = δnmH

(0)
pq + δn+1,mH

(1)
pq + δn,m+1H

(1)†
pq . (2.26)

Applying this to a two-dimensional array we get the following:∑
m,q

Hnm
pq Ψm

q =
∑
q

(H(0)
pq Ψn

q +H(1)
pq Ψn−1

q +H(1)†
pq Ψn+1

q ). (2.27)

The following ansatz will be used:

Ψn
p (k) = eiknΦp . (2.28)

Substituting this in (2.27) we get:∑
m,q

Hnm
pq Ψm

q = eikn
∑
q

(H(0)
pq Φq + eikH(1)

pq Φq + e−ikH(1)†
pq Φq) (2.29)

With a more transparent notation where |Φ〉 ≡ (Φ1,Φ2, ...,ΦM):

(ĤΨ)n = eikn(H0 |Φ〉+ eikH1 |Φ〉+ e−ikH†1 |Φ〉) (2.30)

The HΨ = EΨ eigenvalue problem this way translates to:

H0 |Φ〉+ eikH1 |Φ〉+ e−ikH†1 |Φ〉 = E |Φ〉 . (2.31)

Now this is an eigenvalue problem of an M ×M matrix, which can be solved nu-
merically. This will give M eigenvalues and eigenvectors for every k wave-vector
Ep(k), p ∈ {1, 2, ...,M}.

The dispersion relation in the case of periodic boundary condition is the same as
in the infinite Lieb-lattice (2.10) where kx ≡ k and ky ∈ {0, 2π/W, 2π/W · 2,
..., 2π/W · (W − 1)}. for every k there are W bands above 0, W bands below 0

17



Chapter 2 Tight-binding model of the Lieb lattice

and W flat bands. The other two boundary conditions can’t be solved this way.
We can see numerical solutions for the cases presented in figure 2.6 (b) and (c)
on figure 2.10, also for a larger system on figure 2.11.

-3

-2

-1

0

1

2

3

0 π/2 π 3π/2 2π

ε(k)

γ

k

(a) hanging boundary

-3

-2

-1

0

1

2

3

0 π/2 π 3π/2 2π

ε(k)

γ

k

(b) closed boundary

Figure 2.10: Dispersion relation of a Lieb lattice strip of widthW = 5
with two different boundary condition. There are 5 degenerated flat
bands in each case.

-3

-2

-1

0

1

2

3

0 π/2 π 3π/2 2π

ε(k)

γ

k

(a) hanging boundary

-3

-2

-1

0

1

2

3

0 π/2 π 3π/2 2π

ε(k)

γ

k

(b) closed boundary

Figure 2.11: Dispersion relation of a Lieb lattice strip of width W =
15 with two different boundary condition. There are 15 degenerated
flat bands in each case.
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Chapter 2 Tight-binding model of the Lieb lattice

As we can see the two boundary conditions make a very important difference in
the dispersion relation. The hanging boundary condition has a gap at k = π while
the closed boundary condition is always gapless. In the case of periodic boundary
condition we can have both characteristics depending on the parity ofW . IfW is
even, ky can equal π thus the Dirac points is included so the dispersion relation is
gapless. IfW is odd, ky can’t equal π so there will be a gap. The nearest point to
the Dirac point is ky = π ± π/W , thus the gap is approximately π/W . Similarly
in the hanging boundary condition we see that the gap decreases as the width of
the strip increases.

2.3.2 Number of open channels

It is useful to define the number of open channels N for later uses. At a given
energy the number of open channels is the number of possible propagating states
(k ∈ R) with positive group velocity at the given energy. We can simply count
these by drawing an E = const. line on the dispersion relation and counting the
intersections and taking the half of it. We can see a simple example for this on
figure 2.12.

-3

-2

-1

0

1

2

3

0 π/2 π 3π/2 2π

ε(k)

γ

k

Figure 2.12: The dispersion relation seen on figure 2.10 with showing
the propagating modes at E = 1 energy. The number of open channels
at this energy is N = 2.

On figure 2.13 we can see the number of open channels for the two boundary
conditions for different W values. We can see the difference near zero energy
caused by the gap. It is also visible that the gap becomes smaller for wider
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Chapter 2 Tight-binding model of the Lieb lattice

strips. The maximum of the number of open channels is at E = 2γ energy. This
is the energy where the 2.10 dispersion relation has a saddle point.

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

N

E/γ

W = 5
W = 15
W = 30

(a) hanging boundary

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

N

E/γ

W = 15
W = 30
W = 5

(b) closed boundary

Figure 2.13: The number of open channels for different boundary
conditions and different widths W . Only the positive energies are
shown, for the negative energies the spectrum is symmetric.

2.3.3 Hamiltonian of disordered Lieb lattice ribbon

We will see in section 5.1 that in the actual calculation we will be using an infinite
strip of pure Lieb lattice, where in a finite L length region we introduce disordered.
In our calculations we use the Anderson model for the disorder [9]. The disorder
affects only the on-site potentials. The on-site potential of every disordered site
is a random number selected from a uniform distribution εs ∈ [−εd, εd].
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3 Landauer-Büttiker formalism

In this chapter the basics of the Landauer-Büttiker formalism will be discussed.
This formalism can be used to calculate electric transport in quantum mechan-
ical systems. By calculating the Green’s function of the system it is possible to
obtain it’s conductance. In this thesis only a two terminal system on lattice will
be discussed at T = 0 K temperature, but the general formalism can be extended
to multiterminal systems with finite temperature too. For further readings about
the whole formalism and applications see: [10], [4], [5]

3.1 Landauer formula

First let’s take a ballistic conductor of length L and width W . The conductor is
connected to two reflectionless contacts having chemical potential µ1 and µ2. In
this case the current through the conductor can be calculated as (for derivation
see [10]):

Ic =
2e2

h
· N · µ2 − µ1

e
, (3.1)

where N is the number of open channels in the conductor. The difference in
chemical potential is achieved through a voltage difference eV = µ2 − µ1. So the
contact conductance or contact resistance can be calculated as:

Gc =
2e2

h
N Rc =

h

2e2N =
12.9

N kΩ . (3.2)

Of course this is only the case if there is no scattering in the conductor. If there
is scattering we can think of it the following way. The system consist of two
contacts a scattering region and two leads (wires) connecting the contacts to the
scattering region. The leads are assumed to be ballistic, and the contacts are
assumed to be reflectionless. This is the so called two terminal setup (see figure
3.1).
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µ1 Scattering region µ2L R

Figure 3.1: Schematic figure of a two terminal setup. µ1 and µ2 are
the chemical potentials in the contacts. L and R are the left and right
leads.

In a two terminal setup every open channel of the first lead has transmission
probabilities to scatter in the open channels of the second lead. By knowing this
transmission probabilities the Landauer formula can be expressed as:

G =
2e2

h

N1∑
p

N2∑
q

Tqp =: GoT̄21 (3.3)

where Tqp is transmission probability from the p-th open channel in the first lead
to the q-t open channel in the second lead (actually the transmission probabili-
ties normalized with the fraction of group velocities |vq|/|vp| as explained in detail
in [10]). Go = 2e2/h is the conductance quantum and T̄21 is the transmission func-
tion from the first to the second terminal. The transmission function is an energy
dependent quantity. For the 0 K temperature transport it can be shown that the
transmission function on the Fermi energy can be used.

The transmission function can be calculated from the scattering matrix (S). The
scattering matrix gives the relation of the incoming channels to the outgoing
channels (see figure 3.2 for a visual representation):

o = S · i . (3.4)

In a two terminal system the S-matrix can be partitioned in the following way.
First we divide the i and o vectors in two sections:

i =

(
iL

iR

)
o =

(
oL

oR

)
, (3.5)

where iL/R are the incoming channels and oL/R are the outgoing channels on the
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Scattering region

i1

i2

o1

o2

i3

i4

o3

o4

Figure 3.2: Visual representation of the S-matrix. ip-s are the incom-
ing channels, and op-s are the outgoing channels.

left/right terminals. With this the S-matrix is partitioned as:

S =:

(
r t′

t r′

)
. (3.6)

Here r contains the reflexion amplitudes and t contains the transmission ampli-
tudes. From the viewpoint of electric transport we are interested in the scattering
from iL to oR. This is described by t as:

oR = t · iL . (3.7)

The transmission probabilities are the absolute square of the transmission ampli-
tudes. With this the transmission function can be calculated as:

T̄21 =

N1∑
p

N2∑
q

Tqp =

N1∑
p

N2∑
q

|tqp|2 = Tr
(
tt†
)
. (3.8)

This means that the conductance can be calculated if the S-matrix is known for
a given system. In the followings a formalism will be shown to determine the
S-matrix for a tight binding system.
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3.2 Eigenvalue problem of generalised leads

We will start with the eigenvalue problem of an infinite generalised lead. A
generalised lead can be thought of as a linear chain, where every node has multiple
degrees of freedom. This is the same description we used in section 2.3 for the
infinite strip of Lieb lattice, but now for an arbitrary lattice. The Hamiltonian
of a generalised lead looks like (2.22):

Ĥ =



H0 H1 0 0 . . .

H†1 H0 H1 0 . . .

0 H†1 H0 H1 . . .

0 0 H†1 H0 . . .
...

...
...

... . . .


, (3.9)

where now H0 is an arbitrary M ×M Hermitian matrix and H1 is an arbitrary
M ×M matrix, where M is the degrees of freedom in one node. Of course in our
calculations H0 and H1 will be the previously defined ones (2.25). If we want
to solve the eigenvalue problem of the Ĥ Hamiltonian we could use the method
showed in the previous chapter at section (2.22) and use(

H0 + eikH1 + e−ikH†1

)
|Φ〉 = E |Φ〉 (3.10)

to calculate the eigenvalues. This will give M eigenvalues and eigenvectors for
every k wavevector. In this case the energies are parametrized by k. In the
case of Green functions we want to do the opposite and use the energy as a
parameter, so we want to know the eigenvectors at a given energy, and not at a
given wavenumber. To do this we can use the following trick. Lets introduce a
new |Θ〉 vector the following way:

|Θ〉 := e−ik |Φ〉 (3.11)

Now equations (3.10) and (3.11) can be united to form a generalised eigenvalue
problem: (

E · I−H0 −H1

I 0

)(
|Φ〉
|Θ〉

)
= eik

(
H1 0

0 I

)(
|Φ〉
|Θ〉

)
. (3.12)

The solution of this problem is easy if H1 is invertible. Since we can multiply the
first rows with the inverse and get a normal eigenvalue problem. But unfortu-
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nately this is not the case for our H1 in (2.25). We will get back to this problem
in section 3.2.1. For now let’s assume that we have solved the eigenvalue problem.
Since now we have a 2M × 2M matrix we will have 2M eigenvalues. So for a
given E energy we have 2M eigenstates characterised by 2M wavenumbers. It is
useful to introduce the group velocity of a state calculated as:

v(k) := ∂kE(k) = ∂k 〈Φ|H0 + eikH1 + e−ikH†1 |Φ〉
= i 〈Φ| eikH1 − e−ikH† |Φ〉 , (3.13)

the last equality is true because ∂k 〈Φ|Φ〉 = 0. We will group our states using the
following properties. We will have propagating modes if Im(k) = 0 or evanescent
modes if Im(k) 6= 0. Depending on the sign of the group velocity of the propa-
gating modes we will have |+〉 and |−〉 states. In the case of evanescent modes
the sign of Im(k) will be the characterizing property. With this we will have |σp〉
(σ ∈ {+,−} and p ∈ {1, 2, ...,M}) states, with wavenumbers kσp .

The eigenstates |σp〉 are not necessarily orthogonal to each other since they come
from the (3.12) generalised eigenvalue problem. It is useful to define the dual
states (〈σ̃p|) using the following relation:

〈σ̃p|σq〉 = δpq . (3.14)

This can be calculated numerically as a matrix inverse.

3.2.1 Eigenvalue problem with singular H1

We saw that solving the generalised eigenvalue problem (3.12) is not straight-
forward if the H1 matrix is singular. To overcome this problem we can use
the so called singular value decomposition (SVD). Here a brief introduction will
be shown for the method without any proofs. For a more detailed explanation
see [11]. Our singular matrix can be expressed as:

H1 = UΣV† , (3.15)

where U and V are unitary matrices and Σ is a diagonal matrix. Σ contains
the singular values of H1 (the square roots of the eigenvalues of H1H

†
1). The

singularity of H1 is caused by the zero elements in the diagonal of Σ. We can
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define the following matrices using U and V:

Û =



U 0 0 0 . . .

0 U 0 0 . . .

0 0 U 0 . . .

0 0 0 U . . .
...

...
...

... . . .


, V̂ =



V 0 0 0 . . .

0 V 0 0 . . .

0 0 V 0 . . .

0 0 0 V . . .
...

...
...

... . . .


, (3.16)

Since Û is a unitary matrix we can use it as a unitary transformation on Ĥ

without affecting the eigenvalues:

Ĥ→ Û†ĤÛ (3.17)

H0 → U†H0U (3.18)

H1 → U†H1U = ΣV†U . (3.19)

By rearranging the indices we can get the following partitioning for Σ:

Σ =:

(
Σn 0

0 0

)
, (3.20)

where Σn contains only nonzero element in the diagonal. With this the parti-
tioning of H0 and H1 will be the following:

H0 =:

(
Hn

0 A

A† Hd
0

)
H1 =:

(
Hn

1 B

0 0

)
. (3.21)

Now the sites described by Hd
0 can be eliminated using the so called decimation.

You can read about the process in detail in appendix B. After the decimation
we will have an effective reduced Hamiltonian that is energy dependent, but the
eigenvalues of the original Ĥ Hamiltonian are unaffected. The new Hamiltonian
will have the same linear chain structure and the new energy dependent H̃0 and
H̃1 Hamiltonians will be:

H̃0 = Hn
0 + A(E · I−Hd

0)
−1A† + B(E · I−Hd

0)
−1B†

H̃1 = Hn
1 + B(E · I−Hd

0)
−1A† . (3.22)

With this new decimated Hamiltonian the (3.12) generalised eigenvalue problem
can be solved since it can be shown that the new H̃1 Hamiltonian is not singular.
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We can see the whole process of SVD and decimation schematically on figure 3.3.
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Figure 3.3: Schematic representation of the SVD and decimation. We
start with the top linear chain. After the SVD we get the structure
shown in the middle chain. After decimating the Hd

0 sites we end up
with a linear structure shown at the bottom. While the original H1

matrix was singular, in the new chain the H̃1 is invertible.

It is important to note here, that this works for an infinite lead. But for our
purposes only a semi infinite lead will be used. In that case this method should
be slightly modified. In the bulk of the lead the previous statements are correct,
but for the edge of the lead the H̃0 is not the same as in 3.22. But instead it will
be:

H̃′0 = Hn
0 + A(E · I−Hd

0)
−1A† . (3.23)

This means that the actual system will be like the one we can see on figure 3.4

H̃1 H̃1 H̃1 H̃1 H̃1
H̃0 H̃0 H̃0 H̃0 H̃′

0

Figure 3.4: Structure of the decimated semi-infinite lead.

In the actual numerics we will use the bulk part as leads and we will put the last
node (H̃′0) in the scattering region.
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3.3 Green’s function of generalised leads

Let’s assume that we already have on hand |σp〉, 〈σ̃p| and kσp . The Green’s function
(G(E)) is defined through the following equation:

(E · Î− Ĥ)Ĝ = Î , (3.24)

and with index notation:∑
`,r

(E · δn`pr −Hn`
pr )G`m

rq = δnmpq . (3.25)

If we substitute the (2.26) Hamiltonian in this equation we get the following:

(E · I−H0)G
nm −H1G

n+1,m −H†1G
n−1,m = Inm . (3.26)

It can be shown that the following Green’s function satisfies this equation:

Gnm =


M∑
p=1

eik
−
p (n−m) |−p〉 〈−̃p|V−1 for n ≤ m

M∑
p=1

eik
+
p (n−m) |+p〉 〈+̃p|V−1 for n ≥ m

, (3.27)

where the V matrix can be calculated as:

V =
M∑
p=1

H†1

[
e−ik

+
p |+p〉 〈+̃p| − e−ik

−
p |−p〉 〈−̃p|

]
. (3.28)

In the case of two terminal transport calculations we need the Green’s function of
a semi-infinite lead. We can have two different type of leads depending of which
sites we eliminate. In the case where the sites n ≥ n0 are missing we will call the
Green’s function Gnm

L , and in the case where n ≤ n0 Gnm
R . We can address this

problems as a boundary condition problem, where:

Gn0,m
L/R = 0 for m ≶ n0 . (3.29)
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This can be achieved using the following Green’s functions:

Gnm
L = Gnm −

M∑
p,q=1

|−q〉 eik
−
q (n−n0) 〈−̃q|+p〉 eik

+
p (n0−m) 〈+̃|V−1

Gnm
R = Gnm −

M∑
p,q=1

|+q〉 eik
+
q (n−n0) 〈+̃q|−p〉 eik

−
p (n0−m) 〈−̃|V−1 . (3.30)

In the practical calculations we will be only interested in the Green’s function on
the edge of the leads. This means that the following two matrices are important:

Gn0−1,n0−1
L =

[
I−

M∑
p,q=1

|−q〉 e−ik
−
q 〈−̃q|+p〉 eik

+
p 〈+̃p|

]
V−1

Gn0+1,n0+1
R =

[
I−

M∑
p,q=1

|+q〉 eik
+
q 〈+̃q|−p〉 e−ik

−
p 〈−̃p|

]
V−1 . (3.31)

3.4 Dyson equation

With the previously explained formalism we can calculate numerically the Green’s
function of the leads that connect to the scattering region. Now we want to
calculate the Green’s function of the whole system. For this we can use the Dyson
equation. Let’s build up our system like the followings. The H0 Hamiltonian
describes the two leads and the scattering region, but without any connection
between the three. This means that it can be chosen to be block diagonal:

H0 =

ĤL 0 0

0 ĤR 0

0 0 ĤS

 , (3.32)

where ĤL and ĤR are the Hamiltonians of the leads on the left and right side
and ĤS is the Hamiltonian of the scattering region. The connection between the
leads and the scattering region is described by H1:

H1 =

 0 0 Γ̂L

0 0 Γ̂R

Γ̂†L Γ̂†R 0

 , (3.33)

where Γ̂L and Γ̂R describes the hoppings from the left/right lead to the scattering
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region. The equation defining the Green’s function is the following:

(E · I −H0 −H1)G = I (3.34)

We can also define the Green’s function of the H0 system as:

(E · I −H0)G0 = I . (3.35)

Since H0 is block diagonal the corresponding Green’s function will also be block
diagonal:

G0 =

ĜL 0 0

0 ĜR 0

0 0 ĜS

 , (3.36)

where ĜL and ĜR are the previously derived Green’s functions for the left and
right leads (3.30). And ĜS can be calculated using:

ĜS = (E · I− ĤS)−1 . (3.37)

With this the (3.34) equation becomes:

(I − G0H1)G = G0 . (3.38)

With a matrix inversion we get the Dyson equation as:

G = (G−10 −H1)
−1 (3.39)

The problem with this equation now is that we have to compute the inverse of an
infinite matrix. We will see in the next section that for the transport calculations
we will not need the whole G Green’s function, but only the elements on the edge
of the scattering region. We will show that it is enough to compute the inverse of
a finite matrix to compute these elements, and thus the calculation can be done
numerically.

First we have to look at the structure of the G0 and H1 matrices. We rearrange
the sites in a way that in the bottom right corner we have the scattering region
and the edge of the leads. With this the two matrices will look like the following:
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G0 =


ĝB0L 0 ĝBE0L 0 0

0 ĝB0R 0 ĝBE0R 0

ĝBE†0L 0 ĝE0L 0 0

0 ĝBE†0R 0 ĝE0R 0

0 0 0 0 ĜS

 =:

(
ĝB0 ĝBE0

ĝBE†0 ĝ0

)
, (3.40)

H1 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 γL

0 0 0 0 γR

0 0 γ†L γ†R 0

 =:

(
0 0

0 ĥ1

)
, (3.41)

where we introduced ĝB0L/R which is the Green’s function inside the leads, ĝE0L/R
which is the surface Green’s function of the leads (this is what we derived in
(3.31)) and ĝBE0L/R is the connection between the previous two. The γL/R matrices
are the hoppings between the edge of the leads and the scattering region. We can
partition the G matrix similarly as:

G =:

(
ĝB ĝBE

ĝBE† ĝ

)
. (3.42)

For the transport calculation the part that we are interested in is ĝ. If we put
these partitionings in the (3.38) equation we get the following equation for ĝ:

(̂I− ĝ0ĥ1)ĝ = ĝ0 . (3.43)

This means that the we have an equation of the same structure as in the (3.39)
Dyson equation but now the finite ĝ0 and ĥ1 can be used:

ĝ = (ĝ−10 − ĥ1)
−1 . (3.44)

3.5 Fischer-Lee relations

The previous sections explained how the g Green’s function can be calculated.
Now we will give a formula for calculating the S-matrix if the g Green’s function
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is known. First let’s partition g the same way we can partition g0 in (3.40) as:

g =:

(
gE gES

gES† gS

)
gE =:

(
gELL gELR
gERL gERR

)
, (3.45)

Where gE is the surface Green’s function. We can partition similarly to the
surface Green’s function the S-matrix (the same way we did in (3.6)):

S =:

(
SLL SLR

SRL SRR

)
≡
(

r t′

t r′

)
. (3.46)

With these definitions we can express the S-matrix as:

(Sβα)qp = 〈−̃q|β gEβαVα − δβα |+p〉α

√
|vβ(k−q )|
|vα(k+p )| , (3.47)

where α, β ∈ L,R and p/q goes over the open channels in the α/β leads. In this
formula we used the convention that the |+〉 states travel towards the scatter-
ing region, and |−〉 states travel from the scattering region. This simplifies the
formula, but we have to be careful since, in the previous derivations the positive
direction was the positive direction of the x axis. This formula is the so called
generalised Fischer-Lee relation. This was originally proposed by Fischer and
Lee [12]. A more detailed and up to date derivation can be found in [13]. If the
left and right leads are the same, and we are only interested in t this relation
simplifies to:

tqp = 〈−̃q|gERLV |+p〉
√
|v(k−q )|
|v(k+p )| . (3.48)

With this the transmission function can be calculated using (3.8).

3.6 Conductivity of two terminal setup

To summarize the things in this chapter we give a step by step algorithm to
calculate the conductivity of a two terminal system. The Hamiltonian of the lead
is (2.22) the Hamiltonian of the scattering region is constructed as explained in
section 2.3.3. First we decimate the Hamiltonian of the leads as in (3.22), then
we solve the (3.12) generalised eigenvalue problem. After that we calculate the
surface Green’s functions of the leads (3.31). After this we solve the surface Dyson
equation (3.44). With the surface Green’s function we calculate the transmission
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amplitudes using (3.48). With this we calculate the transmission function as in
(3.8). Finally we substitute this in the Landauer formula (3.3) and compute the
conductance.
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4 Scaling theory

In this chapter the basics of disordered electron systems, and the scaling theory of
localization will be discussed. For further readings on this topic see [14], [15]. This
topic is very broad and there are still many open questions so in this chapter we
want only to highlight the most important concepts that we will study in section
5.4 numerically.

4.1 Scaling theory of localization

We saw in the previous chapter that the natural unit of the conductance is Go =

2e2/h. It is useful to define the dimensionless conductance as:

g :=
G

Go

. (4.1)

We consider a disordered conductor, which is macroscopically homogeneous. Let’s
take a d dimensional hypercube of linear dimension L from this conductor. The
conductance of this block is g(L). The one-parameter scaling theory is based on
the assumption that the dimensionless conductance alone determines the conduc-
tion behaviour of the system. This means that the conductance of hypercube of
size L (where L is much larger than the mean free path) can be used to calculate
the conductance of a hypercube of linear size 2L as:

g(2L) = f(g(L)) . (4.2)

This means that no microscopic parameters are needed (such as the mean free
path). This assumption can be extended to hypercubes with size α · L, where:

g(αL) = f(g(L), α) . (4.3)
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Let’s define the scaling function (β) as the logarithmic derivative of g over L:

β :=
d log g(L)

d logL
. (4.4)

If (4.3) holds it can be shown that β can be expressed as a function of only g
since:

d log(g(L))

d logL
=
L

g

dg(L)

dL
=
L

g

dg(αL)

dL

∣∣∣∣
α=1

=
1

g

dg(αL)

dα

∣∣∣∣
α=1

=
1

g

df(g, α)

dα

∣∣∣∣
α=1

= β(g) . (4.5)

The scaling function can be used to extrapolate a system to the thermodynamic
limit. If β(g) > 0 the system scales toward higher conductances and if β remains
positive for higher g values the system becomes a conductor in the thermody-
namical limit. If β(g) < 0 the system scales towards lower conductances, so if
β remains negative for lower conductances the system becomes an insulator in
the thermodynamical limit. If β(g) = 0 we have a fixpoint, depending on the
derivative of β(g) it can be stable or unstable. If dβ(g)/dg > 0 the fixpoint is
unstable, and in the other case it is stable. If the fixpoint is stable it means that
the system will scale toward a constant conductance. If the fixpoint is unstable
the system will either scale toward a conductor or an insulator depending on the
initial conductance.

4.2 Data collapse

If we assume that for different disorder strength the scaling function of the system
is the same we get a very strong constraint on the g(L) curves. At a given disorder
strength we get a curve on the log g−logL graph. Let’s take two different disorder
strength and call the corresponding curves log(g1(logL)) and log(g2(logL)). But
since the logarithmic derivative can be expressed as a function of g at every
log(g) value the derivative of the functions must be equal. This means that only
a constant shift (c) can be the difference between the two functions so:

log(g2(logL)) = log(g1(logL+ c)) . (4.6)
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This translates to the following without the logarithms:

g2(L) = g1(c · L) . (4.7)

This means that it is possible to rescale the length using a function dependent
on the disorder strength (εd):

L∗ = g(εd) · L , (4.8)

with which the g(L) curves of different disorder collapse to the same curve. This
works well if we are far from the fixpoints, where β(g) = 0. Near a fixpoint after
the collapse there should be three curves (one increasing, one decreasing and a
constant line). In the case of an unstable fixpoint the three curves should diverge
for bigger systems. In the case of a stable fixpoint the three curves should con-
verge for bigger systems.

4.3 Classical theory of one parameter scaling

The theory presented here was introduced by Anderson [16]. This works well for
quasi-free electrons, but has many important features that can be used for other
systems as well.

For very high conductance g � 1 with many open channels one expects the
Ohm’s law to hold for the conductance. Thus the system can be described with
a scale independent conductivity σ and the conductance can be calculated as:

G(L) = σLd−2 . (4.9)

this means that the scaling function is:

β(g) = d− 2 . (4.10)

On the other hand when the conductance is very small (at very strong disorder)
the Anderson localization [9] occurs. With this the conductance of the system
will be exponentially small:

g(L) ∝ e−L/ξ , (4.11)
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where ξ is the localization length. In this regime the β function is the following:

β(g) =
d

d logL

(
−L
ξ

+ const.

)
= −L

ξ
= log g + const. (4.12)

Between the two asymptotic behaviour the easiest interpolation is the continuous
monotonic one. This was the assumption made by Anderson, which is not true
for every system as we will see later. We can see the schematic shape of the β(g)

function as showed by Anderson on figure 4.1.

-6
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-3

-2

-1

0

1

2

β

log(g)

d = 3

d = 2

d = 1

Figure 4.1: A sketch of the scaling function for different dimensions d
as predicted by [16].

There are many consequences to this theory. In three dimensions we see that the
scaling function is positive for high conductances and negative for low conduc-
tances. So there is a gc critical conductance where there is an unstable fixpoint.
This gives rise to the so called Anderson metal-insulator transition.

We see that in two and one dimension the β-function is always negative. Meaning
that for a sufficiently large sample the system will be an insulator.
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4.4 Scaling theory in two dimensions

The picture explained above is only valid for certain systems. Mostly systems
where there are quasi-free electrons. The most important difference in our case is
that the systems in two dimensions don’t necessarily have an always negative β
function. This means that it is possible to have metallic behaviour and also it is
possible to have a metal-insulator transition in two dimension. This statement is
supported by experimental result [17], theoretical [18] and numerical [19], [20], [7]
calculations.

In systems from the symplectic symmetry class (time reversal symmetry, but no
spin rotation symmetry) the scaling theory is still an open question. In the case
of the Ando model in [20] they found that the scaling function has a fixpoint
and the system shows a metal-insulator transition. In the case of graphene which
also has symplectic symmetry results show that there is no transition and it has
an always positive scaling function [7]. This is also supported by the arguments
of [18].
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5.1 Numerical method

5.1.1 Setup

The studied system is an infinite strip of Lieb lattice. We can see the system on
figure 5.1. In this work we will concentrate on the boundary conditions (b) and
(c) from figure 2.6.

Figure 5.1: The studied Lieb lattice system with closed boundary
condition. The black sites are the leads, the red sites are the scattering
region. The dimension of the scattering region on this example is
W = 6 and L = 8.

The Hamiltonian of the system can be constructed as explained in section 2.3.
The part shown in black are the leads. They have ε` = −1.5 on-site potential.
At EF = 0 Fermi energy they act as a good conductor with many open channels.
The middle part in red is the scattering region. The width of the scattering region
is W and the length is L. W and L are whole numbers representing the number
of unit cells in the given direction.
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The i-th site in the scattering region has on-site potential as described in section
2.3.3:

εi = εsi + V0 , (5.1)

where εs is a random number from a uniform distribution in [−εd, εd], with the
constraint that

∑
i

εsi = 0. There is no disorder in the hopping parameters they

are γ = 1 for every nearest neighbor.

5.1.2 EQuUs

For the numerical calculations the EQuUs program developed by the Eötvös
Quantum Transport Group was used. The program is open source and can be
downloaded from [21], also many informations can be found about the usage and
implemented algorithms on this website.

I will give a brief introduction to the program and what can it be used for. For a
deeper description see the website. EQuUs is written in MATLAB, it has many
implemented routines to effectively carry out transport calculations using the
Landauer Büttiker formalism. The program can also be used to treat supercon-
ductivity and magnetic field as well.

EQuUs can be used to calculate the steps explained in section 3.6. One has to
define the Hamiltonian and with the implemented algorithms it is possible to
carry out those steps.

We saw previously the structure of the Hamiltonian (see figure 2.9). The most
upfront thing is that it is mostly empty. So for memory reasons it is useful to save
only the nonzero elements in a sparse format. On top of that EQuUs uses the
Intel MKL PARDISO package [22]. With the PARDISO package it is possible
to calculate individual elements of the inverse of a sparse matrix. This in our
case is very useful since we have sparse matrices, and we are only interested in
the Green’s function on the edge of the leads. We can read about the algorithm
in [23]. This is a very important feature in EQuUs and it is crucial for the
calculation of large systems.
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5.1.3 NIIF HPC

The calculations were done on the Debrecen3-Phi supercomputer. This computer
can be found at the University of Debrecen. The supercomputer is part of the
NIIF Program (Nemzeti Információs Infrastruktúra Fejlesztési Program). The
NIIF HPC (high performance computing) provide a lot of HPC resources to aca-
demic and research purposes (see [24] for more details).

The nodes which were used for the transport calculations are equipped with the
so called Intel R© Xeon PhiTM Coprocessor 7120P. This contains 61 cores with
4 threads each totaling 244 threads and it can be used for high performance
calculations. The matrix inversion (needed in the Dyson equation) was done on
these cards using the PARDISO package. This gave the possibility to collect data
in a much higher rate on larger systems.

5.2 Conductance of pure system

In this section the pure Lieb lattice will be discussed. This is the case when
εd = 0. The possible parameters are the size of the system L, the aspect ratio
W/L and the V0 potential.

First the V0 = 0 case will be studied. From many calculations done on differ-
ent sizes and aspect ratios the result we got was the following. For the hanging
boundary condition, where there is a gap in the system we got g = 0 for every run.
This can be understood since there is a gap the only available states are the states
in the flat band. And even though there are many of these states (W · L) they
have 0 group velocity, thus the carry no current. In the case of the closed bound-
ary condition where there is no gap we get a constant g = 1 for every size and
aspect ratio. This is a very unusal behaviour and it is caused by the gapless band.

A very important result for the case of graphene was the minimal conductivity [25]

5.3 Conductance with disorder

In this section we study the effects of disorder on the conductance. In practice
we start using the εd parameter too. The studied disorders will be in the range
[0, 1], with the strongest disorder being equal to the hopping parameter. Since
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the disorder is taken from a random distribution, we need to do multiple calcula-
tions for the same parameters. This demands a lot of numerical calculations and
computational time. For this reason it is convenient to reduce our parameter set
and fix some of the parameters. Since we are expecially interested in the effects
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of the flat band
Let’s look first at the distribution of conductances using a fixed system size and
fixed disorder.
n 0.01 és 0.1 s 0.01 és 0.1 s 1 n 0.001 s 0.05 50 100

0 0.5 1 1.5 2 2.5
G [2e2/h]

(a)

0 0.5 1 1.5 2 2.5
G [2e2/h]

(b)

0 0.5 1 1.5 2 2.5
G [2e2/h]

(c)

0 0.5 1 1.5 2 2.5
G [2e2/h]

(d)

0 0.5 1 1.5 2 2.5
G [2e2/h]

(e)

0 0.5 1 1.5 2 2.5
G [2e2/h]

(f)

Figure 5.4: Dist 1

t probe
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Figure 5.6: dis scaling

5.4 Scaling

To study the scaling properties of the Lieb lattice we need to evaluate the average
conductance for the same εd at different system size L of the same aspect ratio.
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Again we will only use square systems, so the aspect ratio will be one.
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<sum.tex>

6.1 Outlook
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Appendix A

TB model of multiband systems

Let a(iσ)` be the annihilation operator of the `-th Wannier state at the i-th unit
cell centered at R`

i with spin σ. Let wl(r−R`
i) be the wavefunction of the state

created with a
(iσ)†
` . The ` index can be used to describe multiple atoms in the

same unit cell or different atomic orbitals too. In the framework of tight binding
model we assume the Wannier states to be orthogonal (we neglect the overlap).
We only consider states where the on site potential is zero. By having general
on site potentials only the diagonal part of the Hamiltonian would change, so to
get more transparent formulas we don’t use any on site potential. The hopping
parameters from the m-th state of the j-th unit cell to the `-th state of the i-th
unit cell are denoted with γ`mij . We expect that the hopping parameter will be
small between distant site-s, but we don’t only allow nearest neighbor hoppings.
All in all the second quantized Hamiltonian of an arbitrary tight binding system
has the following form:

H = −
∑
i,j,σ

∑
`,m

γ`mij a
(iσ)†
` a(jσ)m . (A.1)

Applying Bloch’s theorem we know that the Hamiltonian will be diagonal in the
quasimomentum (k). In systems were there are multiple atoms in a unit cell
the Bloch representation is not unique [8]. For practical purposes the following
representation will be used for the creation/annihilation operators of Bloch states:

a
(kσ)
` =

1√
N

∑
i

exp
(
−ikR`

i

)
a
(iσ)
` . (A.2)

The normalization is chosen so to assure the normalization of the Bloch states
created with the creation operators from the vacuum. The inverse relations have
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the following form:

a
(iσ)
` =

1√
N

∑
k

exp
(
ikR`

i

)
a
(kσ)
` . (A.3)

Substituting these in the Hamiltonian:

H = − 1

N

∑
i,j,σ

∑
`,m

∑
k,k′

γ`mij exp
(
−ikR`

i

)
exp
(
ik′Rm

j

)
a
(kσ)†
` a(k

′σ)
m

=
∑
`,m,σ

∑
k,k′

a
(kσ)†
` a(k

′σ)
m

∑
i,j

− 1

N
γ`mij exp

(
−ikR`

i

)
exp
(
ik′Rm

j

)
. (A.4)

First we calculate the last part:

H`m(k,k′) := − 1

N

∑
i,j

γ`mij exp
(
−ikR`

i

)
exp
(
ik′Rm

j

)
= − 1

N

∑
i

exp
(
−i(k− k′)R`

i

)∑
j

γ`mij exp
(
ik′δRm`

ji

)
, (A.5)

where δRm`
ji = Rm

j − R`
i . Since we have a periodical system, the right sum is

actually independent of i. We can think of it as a variable shift for every i, which
doesn’t alter the sum. For simplicity i = 0 will be chosen there. Knowing this
the sum over i can be evaluated using

∑
i

exp
(
−i(k− k′)R`

i

)
= Nδkk′ :

H`m(k,k′) = −δk,k′
∑
j

γ`m0j exp
(
ikδRm`

j0

)
. (A.6)

Going back to the full Hamiltonian our results simplifies to:

H =
∑
`,m,σ

∑
k

a
(kσ)†
` a(kσ)m H`m(k) ,

H`m(k) =
∑
j

−γ`m0j exp
(
ikδRm`

j0

)
. (A.7)

Defining the Hamiltonian matrix (H(k)`m = H`m(k)), and the vector of annihi-
lation operators ((akσ)` = a

(kσ)
` ) the Hamiltonian has the following form:

H =
∑
kσ

a†kσH(k)ak′σ . (A.8)

For calculating the dispersion relation all we need to do is solve the eigenvalue
problem of H(k).
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Decimation

In this appendix we show how can we eliminate certain sites by creating an energy
dependent effective Hamiltonian. The advantage of this process is that we keep
the eigenvalue spectrum unaffected while we reduce the size of the Hamiltonian.
The process is especially useful for treating the singular H1 problem explained
in section 3.2.1. Let’s take an arbitrary H Hamiltonian matrix. The eigenvalue
problem of H is:

HΨ = EΨ . (B.1)

First the case of decimating one site will be shown. If we want to get rid of the
k-th site (where k is one of the indices of the Ψ vector) we can do the following.
The eigenvalue problem for the k-th site looks like:∑

j

HkjΨj = EΨk . (B.2)

We can separate Ψk on the left side as:∑
j 6=k

HkjΨj +HkkΨk = EΨk . (B.3)

We can use this equation to express Ψk as:

Ψk =
∑
j 6=k

HkjΨj

E −Hkk

. (B.4)

The eigenvalue problem for every other site is:∑
j 6=k

HijΨj +HikΨk = EΨi i 6= k . (B.5)
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Now we can substitute (B.4) and get:

∑
j 6=k

HijΨj +
∑
j 6=k

Hik
HkjΨj

E −Hkk

= EΨi i 6= k . (B.6)

By defining the decimated Hamiltonian and decimated vector as:

H̃ij(E) := Hij +
HikHkj

E −Hkk

Ψ̃i := Ψi i, j 6= k , (B.7)

the eigenvalue problem will be:

H̃(E)Ψ̃ = EΨ̃ . (B.8)

As we can see this is now a smaller eigenvalue problem, but since the decimated
Hamiltonian is energy dependent, it will be an implicit equation for E. By solving
this we will end up we the original amount of eigenvalues. Similarly we can derive
the decimated Hamiltonian if we want to get rid of a whole block. Let’s say we
want to eliminate the indices k0 < k < kn. We define k ≡ (k0, ..., k). With this
(B.3) becomes: ∑

j /∈k

HkjΨj +
∑
j∈k

HkjΨj = EΨk , (B.9)

where a single vector index means a vector with indices ranging through the
indices in the vector. Again we can express Ψk as:

Ψk =
∑
j /∈k

(E · Ikk −Hkk)−1HkjΨj , (B.10)

Now similarly as (B.11) we get:∑
j /∈k

HijΨj +
∑
j 6=k

Hik(E · Ikk −Hkk)−1HkjΨj = EΨi i /∈ k . (B.11)

As we can see the decimated Hamiltonian can be calculated as:

H̃ij(E) := Hij +Hik(E · Ikk −Hkk)−1Hkj Ψ̃i := Ψi i, j /∈ k , (B.12)
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