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1 Introduction

The concept of topological phases has become one of the central constituents in condensed

matter physics [1�6], as it provides a fundamentally new way for the classi�cation of

physical systems. The most essential idea behind this classi�cation is the bulk-boundary

correspondence [7], which connects the topology of the bulk to the existence of localized

edge states. These edge states are extraordinarily robust against disorder, and they show

special properties, for example they can be perfectly transmitting channels in the case

of Chern insulators or time-reversal symmetric two-dimensional topological insulators.

They also have a wide variety of applications, for example a new way to measure physical

constants [8] or to create an all-electrical detection method of spin polarization [9].

Quantum computing is amongst the most rapidly developing areas in physics, as it

would make certain computational tasks exponentially faster. This increase in speed

would be bene�cial in a host of applications relevant to everyday life, for example it

would accelerate medicine development, improve battery e�ciency, optimize logistical

problems and make possible better AI classi�cation [10]. Thanks to this huge attention,

we are getting closer and closer to the desired goal [11], but there is still a long way to

go [12], for example we need �nd a way to reduce the fragility of the quantum states due

to decoherence and to eliminate the high error rate of the gates manipulating qubits.

The aforementioned two research �elds might seem distant at �rst glance, but it has

already been shown that topological superconductivity, in theory, is useful in storing and

manipulating quantum information in a robust and noise-resiliant way [13�16]. Thanks

to this realization, there has been development in both theoretical [17] and experimental

[18,19] topological quantum computing, however, but there are still a lot of open problems.

There are two major ways of realizing topological qubits: either by using "regular" ma-

terials with special interactions so that it gives rise to topological protection [20,21], or by

using topological materials. For our research, the relevant one is the second, hence we are

detailing that one only. One possibility is to use nanowires [18,22]. A viable experimental

setup from [18] is shown in Figure 1, where a semiconducting nanowire is in proximity

to an s-wave superconductor. The system is subject to an external magnetic �eld B.

Crucially Rashba type spin-orbit coupling, acting like an e�ective momentum-dependent
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perpendicular magnetic �eld BSO is also present. The interplay of superconductivity, the

external magnetic �eld, and spin-orbit coupling results in the stabilization of Majorana

fermions at the edge of the wire.

* 

* 

s-wave
superconductor

B

A BsoBso

Figure 1: Possible experimental setup of implementing a topological qubit. A

semiconducting nanowire in proximity to an s-wave superconductor. An external B �eld

applied parallel to the wire. The momentum-dependent Rashba spin-orbit interaction is

taken into account by a perpendicular e�ective magnetic �eld BSO. The red stars

indicate the expected locations of the Majorana zero modes. Figure was taken from [18].

The other path is to use the edge states of topological insulators. The simplest imple-

mentation uses Majorana zero modes appearing in a topological insulator due to super-

conducting proximity e�ect [23�29]. The number of quantum operations that can be per-

formed with Majorana zero modes under topological protection is limited [15]. However,

it turns out that a broader generalization of the Majoranas, the so-called parafermions,

can extend the possible operations greatly [30]. Figure 2 illustrates three di�erent exper-

imental setups for realizing parafermions.
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Figure 2: Blueprints for experimental realization of parafermionic zero-modes. Figure

was taken from [30].

The �rst con�guration, shown in Figure 2 (a) [31, 32], has two spin-unpolarized 2/3

fractional quantum Hall materials, with a trench between them, containing a supercon-

ductor. The trench is thin enough so that it allows tunneling between the two parts,

which can open a gap. The superconductor will also open a gap, because of Cooper pair-

ing, but it is quite di�erent. Because of the di�erent nature of the gaps, we can expect

parafermions to arise at the domain walls.

The second setup, displayed in Figure 2 (b) [33, 34], has two layers of 1/3 fractional

quantum Hall materials, with a trench between them. Similarly to the previous case,

the trench is thin so that tunneling is possible between the layers. At the sides, the

gap is provided by the tunneling between the same layers, and in the middle, instead of

the superconductor, we have "crossed" tunneling (i.e. the electrons are moving between

layers).

In the third con�guration, seen in Figure 2 (c) [35], the main part is a two-dimensional

topological insulator. Again, the edges are gapped in two, fundamentally di�erent ways:

with two-electron backscattering in one part, and Cooper pairing due to the proximity

of a superconductor on the other one. This setup is fundamentally di�erent from the

previous two, as a magnetic �eld is a core component of them (due to the quantum Hall

e�ect requiring magnetic �eld), while it is not present in this one. The consequence of

this is the explicit time reversal symmetry breaking in the �rst two model, and the lack

of it in the third.
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In topological systems, the quantum information is typically stored in low-energy

excitations. They are usually linked to defects and interfaces, where they are localized at,

and protected by the symmetries of the system, like by time reversal symmetry, particle-

hole symmetry or chiral symmetry. The movement of these defects and interfaces around

each other (usually referred to as "braiding" in the literature) can realize quantum gates

acting on the logical qubits in the degenerate subspace [36�38].

In the present work, our aim is to create a microscopic model of the third con�gura-

tion shown in Figure 2 (c), which can be e�ectively solved numerically in terms of Matrix

Product States. Our choice fell on this setup because the previously mentioned topological

protection due to the time reversal symmetry. Similar systems have already been exam-

ined before, but it was done with bosonization [35, 39], which is viable in describing the

low-energy states, but the excited states are out of its reach. However, these excited states

are taking an important role in, for example, the description of the mechanisms causing

decoherence during the movements of interfaces. The understanding of these mechanisms

is important, as this braiding is essential to the protected quantum operations.
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2 Theoretical background

In this section, we cover the theoretical background necessary for our research. We dis-

cuss the Bogoliubov-de Gennes transformation, a tool for treating a quadratic (in the

creation/annihilation operator) many-body Hamiltonian with the toolset developed for

single particle problems. We introduce the Majorana zero modes and their generaliza-

tions, the parafermions and discuss physical systems when they appear. We describe the

Bernevig�Hughes�Zhang (BHZ) model, a microscopic lattice model which is able to cap-

ture the essential properties of time reversal invariant topological insulators, and show its

relevant properties.

2.1 Bogoliubov-de Gennes transformation

One of the key ingredients to the systems we were investigating is the superconductivity,

hence in this subsection we are covering it's e�ective treatment by the Bogoliubov-de

Gennes (BdG) transformation. In the presented Hamiltonians, superconductivity is in-

duced by the proximity e�ect. Here, we are not specifying the source of of the pair

potential that's responsible for the process. Experimentally, this is equivalent to putting

a superconductor close to system, as it is done in Figure 2.

Let us assume that we have a system with on-site potential, hopping, chemical po-

tential, and Cooper-pair creation/annihilation. The Hamiltonian of the system takes the

form

H =
N∑

m,l=1

c†mhmlcl +

( N∑
m=2

m−1∑
l=1

c†m∆̂mlc
†
l + h.c.

)
. (1)

Note that in this formula, we don't distinguish between internal and external degrees

of freedom, the m and l indices are a given enumeration of those.

We can rewrite it as

H =
1

2
C†H C +

1

2
Trh, (2)

where H is the so-called Bogoliubov-de Gennes Hamiltonian,

H =

 h ∆̂

−∆̂∗ −h∗

 , (3)
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and C is the vector containing the c and c† operators (and they are the vectors containing

the ci and the c†i operators respectively),

C =

 c
c†

 =
[
c1, . . . , cN , c

†
1, . . . , c

†
N

]t
. (4)

The BdG Hamiltonian can be diagonalized as

H

u∗n
v∗n

 = En

u∗n
v∗n

 and H

vn
un

 = −En

vn
un

 (5)

for n ∈ {x|x ∈ N+ ∧ x ⩽ N}, with En ⩾ 0. With these eigenvectors, we can write the

eigenmodes d of the system as particle-hole superpositions

dn =
N∑

m=1

unmcm + vnmc
†
m, (6)

and the ground state energy is

EGS =
1

2

(
Trh−

N∑
n=1

En

)
. (7)

With these, we can �nally write the Hamiltonian as

H =
N∑

n=1

End
†
ndn + EGS. (8)

The ground state can be found from any initial state |Ψ⟩, with removing all of the excita-

tions dN · · · d1|Ψ⟩, as this process will give either the ground state |GS⟩ or 0. Then, from

the ground state, we can construct the excited states as

|nN , . . . , n1⟩ = dnN
N · · · dn1

1 |GS⟩ (9)

with energy

E(n1,...,nN ) = EGS + n1E1 + . . .+ nNEN (10)

for ni ∈ {0, 1}∀i.

There is also a slightly di�erent basis: the "position-�rst-particle-hole-second basis",

which can be easily obtained with a basis transformation (in this special case, it is just a

permutation). In this basis, with a slight abuse of notation, we write C as

C =
[
c†1, c1, c

†
2, c2, . . . , c

†
N , cN

]t
. (11)

6



This form is more convenient, for example when we want to Fourier transform a transla-

tionally invariant BdG Hamiltonian. Another bene�t of this basis is that the naturally

arising symmetry of every BdG Hamiltonian, the particle-hole symmetry, has a simple

form

P = I ⊗ σxK, (12)

where I is the N × N identity matrix, and K is the usual complex conjugation in real

space.

2.2 Majorana zero modes in the Kitaev wire

One of the simplest Hamiltonians of the form (1) is the so-called Kitaev wire [13]. It is

a one-dimensional chain, with nearest-neighbour hopping, but without spin. Due to this

simplicity, the Cooper-pair creation/annihilation in the most simplest case has to happen

on neighbouring sites as well. Mathematically speaking, this is equivalent to having the

coe�cients in the form

hm,l = −µδm,l + w (δm+1,l + δm−1,l) (13)

and

∆̂m,l = ∆δm,l+1, (14)

where µ is the chemical potential, w is the hopping and ∆ is the strength of the pair

potential.

Putting it together, we have the Kitaev Hamiltonian

HK = −µ
N∑

m=1

c†mcm +

(
w

N−1∑
m=1

c†mcm+1 +∆
N−1∑
m=1

c†m+1c
†
m + h.c.

)
. (15)

Let us consider the limit when when µ = 0, w = ∆ = 1. The corresponding Hamilto-

nian reads

HK, fd =
N−1∑
m=1

c†mcm+1 +
N−1∑
m=1

c†m+1c
†
m + h.c.. (16)
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At this point, we can introduce the so-called Majorana operators

γ2p−1 =
c†p + cp√

2
and γ2p =

c†p − cp√
2i

(17)

for p = 1, . . . , N . They obey 2γ2k = 1, they are their own anti-particle, i.e. γ†k = γk, and

they have fermionic commutation relations: γkγl = −γlγk (for k, l = 1, . . . , 2N and l ̸= k).

Using these newly introduced operators, (16) can we rewritten as

HK, fd = −2i
N−1∑
m=1

γ2m+2γ2m−1. (18)

This is an interesting form, as every term contains operators from di�erent sites. It is

also clear that we have pairs of Majorana sites, without any interaction between di�erent

pairs. This is why we call this limit the "fully dimerized limit" Another notable property

of this form is that there are two γ operators are missing, namely γ2 and γ2N−1. From

these two Majorana operators, we can create a fermionic operator as

dM =
γ2N−1 + iγ2√

2
, (19)

which has a serious consequence: every state is (at least) twice-degenerate, as the Hamil-

tonian is independent of this operator.

We can also see this degeneracy from the BdG point of view. The BdG Hamiltonian

HK, fd, in the position-�rst-particle-hole-second basis, has two zero energy eigenstates:

Ψ1 =
1√
2



−i

i

0

. . .

0


and ΨN =

1√
2



0

. . .

0

1

1


. (20)

These states have the previously introduced γ2 and γ2N−1 as their creation operator. With

this formalism, we can see that they are even more special, as they are their own particle-

hole partners. Because of these two properties, they are called Majorana Zero Modes

(MZM).
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However, as we discussed it before, these γ are self-adjoint, so they cannot be fermionic

excitations! Does it mean that two of the eigenmodes of the BdG Hamiltonian are not

fermionic? No, because from these two non-fermionic operators, we can create the appro-

priate fermionic zero energy operators, dM and its conjugate d†M . From this procedure,

the double degeneracy is even more conspicuous, since for a given state ψ we can either

add or remove the zero-energy excitation to get a di�erent (non-zero) state.

We've only seen the fully dimerized Kitaev wire, which is a special case only, so the

next step could be to examine a more general case. It turns out that the Majorana Zero

Modes will still be present if we go away from the fully dimerized limit (without closing

the gap), or if we add a quadratic disorder, and they will still be localized to one side of

the wire, but they will have an exponential decay towards the middle.

2.3 Parafermions in the clock model

In this subsection, we introduce the parafermions, the generalizations of the Majorana

modes. The introduction will follow the review by Alicea and Fendley [30]: we will start

by the generalized quantum clock models, then introduce parafermionic operators and

�nally draw connection between Majorana fermions and parafermions.

If we take the k-dimensional quantum clock model, which is a generalization of the

transverse �eld Ising-model, with length N

Hclock = −J
N−1∑
n=1

(
σ†
nσn+1 + σ†

n+1σn

)
− h

N∑
n=1

(
τ †n + τn

)
+ h.c., (21)

where J and h are the model parameters, σn and τn are local operators on each site de�ned

as

σp =

(
p−1⊗
q=1

I

)
⊗ σ ⊗

(
N⊗

q=p+1

I

)
(22)

and

τp =

(
p−1⊗
q=1

I

)
⊗ τ ⊗

(
N⊗

q=p+1

I

)
, (23)
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with

σ =



1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωk−1


, τ =



0 0 0 · · · 0 1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


(24)

and ω = e2iπ/k. These local operators satisfy σk
n = τ kn = I and σnτn = ωτnσn, while they

commute in di�erent sites.

Then, we can apply Jordan-Wigner transformation, to introduce new operators

α2p−1 = σp
∏
q<p

τq (25)

and

α2p = −ωτpσp
∏
q<p

τq, (26)

resulting in the Hamiltonian

Hclock = −Jω
N−1∑
n=1

α†
2nα2n+1 − hω

N∑
n=1

α†
2n−1α2n + h.c.. (27)

These αn operators are the so-called Zk parafermions, and they satisfy position-dependent

anticommutation relation

αpαq = ωsgn(q−p)αqαp, (28)

while also satisfying

αk
n = I and α†

n = αk−1
n . (29)

In the fully dimerized limit h = 0 of the quantum clock model, two parafermionic operators

α1 and α2N are not present, which means that we have a k-fold degeneracy in the system

[40].
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Note that in the case of k = 2, the parafermionic operators will be equivalent to the

previously discussed Majorana fermions up to normalization and hence the clock model

will be equivalent to the w = ∆ Kitaev wire. The di�erence lies in the normalization

conventions of the operators, and the phase convention of the model parameters. The

other interesting case is when k = 4, as in this case, the degeneracy is fourfold, that is, it

can be encoded in a half-spin fermion (i.e. an electron).

Let us conclude this section with some remarks regarding these exotic excitations. Ma-

jorana zero modes can be potentially realized in non-interacting systems, i.e. mean-�eld

description is su�cient. With braiding alone, they can realize non-trivial unitary opera-

tors, but they cannot realize entangling qubit gates. Going further, k > 2 parafermions

require interactions, i.e. mean-�eld description is not su�cient for treating them. How-

ever, even k parafermions can realize entangling gates with just braiding, and odd k

parafermions promises universal quantum computation [41].

2.4 Bernevig�Hughes�Zhang model

In this subsection, we discuss some important consequences of time reversal symmetry

concerning electron systems. Then, we introduce a topological insulator, the Bernevig-

Huges-Zhang model, discuss its edge states and present the emergence of Majorana zero

modes in it.

2.4.1 Consequences of time reversal symmetry

Wigner's theorem [42] guarantees that a symmetry transformation on (rays of) Hilbert

spaces is representable by either a unitary or an antiunitary transformation on the same

Hilbert spaces. The textbook example for the antiunitary symmetry is the time reversal

symmetry T , because it is important for a lot of physical systems, while being relatively

easy to understand.

There are two, fundamentally di�erent types of time reversal symmetries (TRS): T 2 =

1, which is called bosonic TRS, and T 2 = −1, which is called fermionic TRS. This is

because for any state ψ, we have that (where the ± stands for the sign of T 2)

(T ψ|ψ) = (T 2ψ|T ψ)∗ = (±ψ|T ψ)∗ = ±(T ψ|ψ). (30)
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Bosonic TRS has no physically important consequence, but when T 2 = −1, it gives us

Kramers' Degeneracy: (T ψ|ψ) = 0, i.e. T ψ and ψ are orthogonal. This is especially

important when ψ is an eigenvector of the Hamiltonian, because then T ψ will be another

eigenvector with the same energy, implying at least twofold degeneracy for all eigenvalues

in the spectrum.

From a given Hamiltonian H, there is a simple way to create a new Hamiltonian

that has bosonic or fermionic TRS, by "doubling the Hilbert space". That is, we take a

copy if the system, conjugate it, and couple the two systems by an operator C, so the

Hamiltonian will be

HTRI =

H C

C† H∗

 . (31)

Depending on C, our new Hamiltonian HTRI can have bosonic or fermionic TRS:. If C

is symmetric, i.e. C = Ct, we will have a bosonic TRS with T = σx ⊗ IK, and if C is

anti-symmetric, i.e. C = −Ct, we will have a fermionic TRS with T = iσy ⊗ IK, where

I is the identity operator on the original Hilbert space.

2.4.2 Bernevig�Hughes�Zhang Hamiltonian

The BHZ model, which is a topological insulator [7], can be constructed from the TRS-

breaking Qi-Wu-Zhang (QWZ) model [7, 43] by the previously mentioned "doubling the

Hilbert space" method. There is a huge freedom in the choice of the coupling C that

makes it possible to generate a broad range of models, but we are sticking with C = 0.

The QWZ model is a Chern insulator with topologically protected edge states, but as

it breaks the TRS, they are not Kramers pairs. However the newly introduced doubled

BHZ model will have edge states that are TRS partners.
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The Hamiltonian of the model, on rectangular Nx ×Ny grid, is

HBHZ = u

Nx∑
mx=1

Ny∑
my=1

c†mx,my

σy 0

0 σ∗
y

 cmx,my (32)

+
1

2

Nx−1∑
mx=1

Ny∑
my=1

c†mx+1,my

σy + iσx 0

0 (σy + iσx)
∗

 cmx,my + h.c.

+
1

2

Nx∑
mx=1

Ny−1∑
my=1

c†mx,my+1

σy + iσz 0

0 (σy + iσz)
∗

 cmx,my + h.c.

where u is the so-called sublattice parameter and σi are the Pauli-matrices acting on

the orbital degree of freedom (with possible values p+ and p−), the conjugation of the

matrices are meant element-wise, and

cmx,my =


cmx,my ,↑,p+

cmx,my ,↑,p−

cmx,my ,↓,p+

cmx,my ,↓,p−

 . (33)

Note that this system has T 2 = −1 TRS symmetry, which gives rise to topologically

protected edge states [7, 44].

For the ease of readability, we introduce di�erent notation for the Pauli-matrices acting

on the spin and orbital degree of freedom. From now on, we will keep the σi notation for

the orbital degree of freedom, while we will denote them with si if they are acting on the

spin degree of freedom.

2.4.3 Edge states in the BHZ model

The observed topological invariant of the model is the parity of the number of edge state

Kramers pairs on a terminated part of an edge [7,44]. This invariant is usually called the

Z2-invariant, and I will denote it as D. This Z2-invariant is invariant in the sense that

it cannot change due to adiabatic deformation of the Hamiltonian (continuous change,

that respects the TRS and does not close the bulk gap). Depending on the value of D,

we can have either a trivial insulator (D = 0) or a topological insulator (D = 1), and

the transition between them can be achieved by tuning the sublattice parameter u. The

topologically interesting situation is when D = 1: in this case, at least one edge state
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Kramers pair is topologically protected against disorder, and it turns out that it will also

be perfectly transmitting [7].

In Figure 3, besides the electron density pro�le of a typical edge state (top left)

and bulk state (top right), we also show the complete spectrum with the E ≈ 0 part

emphasized (bottom) for a "potato-shaped" BHZ sample with u = −1. We �nd that the

edge state is, in fact, concentrated at the edge of the sample, while the bulk state has a

considerable weight on all sites. The whole spectrum is degenerate due to TRS, as we

expected. This degeneracy can also be seen for the E ≈ 0 region in the �gure.
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Figure 3: The absolute value square of the wave function of an edge state of the

"potato-shaped" BHZ sample with u = −1, as a function of the lattice index.
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In Figure 4, we see the Local Density Of States (LDOS) of the "potato-shaped" BHZ

sample, calculated by the Kernel Polynomial Method (KPM), which approximates the

LDOS of the Hamiltonian using its Chebysev expansion [45]. It can be seen that the

spectrum of the bulk has a well-de�ned energy gap, while on the edge of the sample there

is considerable spectral weight associated to the energy range coinciding with the bulk

gap.

3 2 1 0 1 2 3
E

0.0

0.5

1.0

1.5

2.0

L(E
,r

)

The sample
center
edge

Figure 4: The local density of states of the "potato-shaped" BHZ model with u = −1 at

sampled in two representative coordinates, i.e. at the edge and in the center of the

model.

In order to understand the nature of the edge states better, we consider now the

spectrum of an in�nite BHZ stripe (in�nite in the y-direction) and examine its dispersion

relation. If we set u = −1 again and add an extra "shift term" to the Hamiltonian in the

form of

Hshift = V
∑
my

(
c†1,my

Ic1,my − c†Nx,my
IcNx,my

)
(34)

for a small constant V and 4× 4 identity matrix I = s0 ⊗ σ0, we will shift the energies at

the left edge "up", and at the right edge "down". This is useful for us, because it makes

clear the fact that there are 4 edge states overall: 2 located exponentially on the left side

of the stripe, and 2 on the right, as can be seen in Figure 5.
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Note that we have been using real space lattice Hamiltonians, but for translationally

invariant systems, where the wavenumber k is a good quantum number (like in the case

of our stripe, where it's translationally invariant in the y direction), we can Fourier trans-

form the Hamiltonian to get the bulk momentum-space Hamiltonian H(k). In Figure 5,

the dispersion relation of the transformed system is the ky-dependent spectrum of the

transformed Hamiltonian H(ky).

/2 0 0.2 /2
ky

3

2

1

0

1

2

3

E

bulk state
edge state, left, spin up
edge state, left, spin down
edge state, right, spin up
edge state, right, spin down

Figure 5: The dispersion relation of a BHZ stripe with u = −1, width Nx = 40 and

"shift parameter" V = 0.1. A state is marked as "edge state" if it has more than 90%

weight on the 3 left-most or right-most states.

A widely used tool for translationally invariant lattice models is the so-called envelope

function approximation (EFA), which provides a rigorous continuum approximation for a

lattice Hamiltonian around a given momentum k0 [7]. The method consist of expanding

the original bulk momentum-space Hamiltonian H(k) around k0, and in the expansion

replacing k − k0 by the momentum (di�erential) operator p.
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Figure 5 also shows the general property of the e�ective low energy Hamiltonian of

the edge states: it is linear in the momentum ky and is proportional to sz. Looking at

the left and right sides, we see that they have opposite group velocities. This means that

the EFA of the edge states around ky = 0 (up to linear order) should be in the form of

HBHZ edge, 1(p) ∝ psz ⊗ ζz, (35)

where we introduced the ζi notation for the Pauli-matrices acting on the "side" degree of

freedom.

Figure 5 could imply mixing between those four edge states at a given energy (as it

would not violate the energy conservation), deep inside the bulk gap, due to, for example,

defect in the system. However this is not possible. The edge states are exponentially

localized at the edges, which is shown in Figure 6 for kx = 0.2π, hence crossing between

left and right edge states is not possible (if the sample is wide enough). However, the two

edge states on the same edge are not separated spatially, but are protected by the TRS.

These localized band of Kramers-pair states are one of the key building blocks in the

Majorana [23] and parafermion platforms [35,39]. In the Majorana platforms they provide

an e�ective Fermi surface where spin degeneracy is lifted which is needed for e�ective

topological p-wave superconductivity to arise once the sample is proximitized with an

s-wave superconductor. For parafermion platforms, using time reversal invariance of this

system, in conjunction with strong interactions leads potentially to the required fourfold

degenerate ground state.
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Figure 6: The probability density of the edge states of a BHZ stripe with u = −1, width

Nx = 40 and "shift parameter" V = 0.1, at ky = 0.2π.

2.4.4 Majorana zero modes in the BHZ model

To observe Majorana Zero Modes in the BHZ model, we can simply add magnetic �eld

and superconductivity to it. The site-speci�c magnetic �eld

B(mx,my) = [Bx(mx,my), By(mx,my), Bz(mx,my)] (36)

can be added to the model with the Hamiltonian

HB =
∑

mx,my

c†mx,my

(
B(mx,my) · s

)
⊗ σ0cmx,my , (37)

where s is the vector of Pauli-matrices acting on the spin degree of freedom.

The site-speci�c superconductivity ∆(mx,my) has the form

Hsc =
1

2

∑
mx,my

∆(mx,my)c
†
mx,my

 0 σ0

−σ0 0

 c†mx,my
+ h.c.. (38)
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Therefore, in the following we solve extended Hamiltonian HBHZ + HB + Hsc by the

BdG transformation. Note that the magnetic �eld and superconductivity are position-

dependent in the sense that they both have a non-zero value in a given region, and zero

in its complementer. Because of this, we can characterise them with a vector and a

number respectively, alongside their supports. In Figure 7 we consider the same potato

geometry as in Figure 3, but we apply additional superconductivity and magnetic �eld

in separate halves of the system. Here, color blue and red encodes lattice sites where

B = [0.2, 0, 0] external magnetic �eld was applied and ∆ = 0.2 superconductivity was

assumed, respectively.

The configuration
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= 0.2
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Figure 7: The "potato-shaped" BHZ model with u = −1, with magnetic �eld and

superconductivity.
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In agreement with literature results [23, 25], we identify Majorana zero modes which

localize at the border of the superconducting and magnetic regimes of the edge of the

sample. Even though MZMs might be constructed in such setup theoretically, its exper-

imental realization is an extraordinary challenge as the magnetic �eld can suppress the

superconductivity.

Alternatively, instead of the magnetic �eld, TRS preserving interactions [35, 39] can

also be applied to open a gap in the subsystem which complements the superconducting

half of the sample. But to do that, the BdG method cannot be used as interaction terms

are not quadratic in the creation and annihilation operators. To treat such more general

problems, in the following, we use the density matrix renormalization group method which

excels in studying low-dimensional interacting quantum systems [46].
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3 Density-matrix renormalization group algorithm

The density-matrix renormalization group algorithm (DMRG) is a numerical variational

technique, specialized to obtain the low-energy physics of quantum many-body systems.

It was �rst developed by Steven R. White [46], to solve the problem of a particle in

a one-dimensional box (which is a simple problem analytically, but all of the previous

Renormalization Group methods failed to solve it).

In the following we present the theory of the DMRG method, but �rst we need to

discuss some important tools and de�nitions. In this section, we will try to stick the

notations used in [47]. Note that in the following subsections, we will work with open

boundary conditions, as this is the one being used most of the time for the DMRG

calculations. However, there is a special form for periodic boundary condition, which can

be found in [47] as well.

In our project we used the Budapest-DMRG [48] package for preliminary studies and

benchmarking, and the ITensor implementation of DMRG [49] for production calculations.

These codes can treat general models, the actual Hamiltonian to be investigated are to

be constructed by the user.

3.1 Singular value decomposition

One of the key mathematical tools of the DMRG method is the singular value decompo-

sition (SVD). If M is an m× n complex or real matrix, then it can be written as

M = USV †, (39)

where U is an m×m complex unitary matrix, V is an n×n complex unitary matrix and

S is an m × n rectangular diagonal matrix with non-negative numbers on the diagonal.

The diagonal entries of the S matrix are called the singular values of M , and are usually

denoted by si = Si,i. The number of non-zero singular values are equal to the rank of the

matrix M , and it is usually denoted by r. The columns of U (the so-called left-singular

vectors of M), denoted as u1, . . . , um; and the columns of V (the so-called right-singular

values of M), denoted as v1, . . . , vn, form two set of orthonormal bases, and with them,
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we can rewrite (39) as

M =
r∑

i=1

siuiv
†
i . (40)

Let us assume that the singular values {si}ri=1 are in decreasing order. Then, this form

is really useful for approximations: Eckart�Young�Mirsky theorem [50] states that the

"best" rank r′ ⩽ r approximation of the matrix M is

M ′ =
r′∑
i=1

siuiv
†
i , (41)

where the "best" means that M ′ is the closest rank r′ matrix to M in both the (induced)

2-norm ∥.∥2, de�ned as

∥M∥2 = sup
∥v∥2=1

∥Mv∥2, (42)

and in the Frobenius norm ∥.∥F, de�ned as

∥M∥F =

√√√√ m∑
i=1

n∑
j=1

|Mij|2 =
√
Tr (M †M). (43)

However, these norms have a much simpler form using the singular values of the matrix

M :

∥M∥2 = max
i

{si} = s1, (44)

and

∥M∥F =

√√√√ r∑
i=1

s2i . (45)

The SVD decomposition of a given matrix M can by attained by solving the eigen-

problem of both MM † and M †M : the left-singular vectors of M can be chosen as a set

of orthonormal eigenvectors of MM †; similarly, the right-singular vectors of M can be

chosen as a set of orthonormal eigenvectors of M †M ; and �nally the non-zero singular

values of M are the square roots of the non-zero eigenvalues of both MM † and M †M .

Up to this point, everything was just pure mathematics, without any obvious relevance

in modelling physical problems. To see its importance, let us assume that our physical

system is partitioned into 2 parts, A with dimension NA and B with dimension NB. Then,

given a pure state |ψ⟩, and orthonormal bases for A as {|i⟩A}i and for B as {|j⟩B}j, we

can decompose |ψ⟩ as

|ψ⟩ =
∑
i,j

Ψi,j|i⟩A|j⟩B. (46)
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This form gives a short formula for the reduced density matrices:

ρA = TrB |ψ⟩⟨ψ| = ΨΨ† (47)

and

ρB = TrA |ψ⟩⟨ψ| = Ψ†Ψ. (48)

We can also carry out the SVD on the matrix Ψ, to obtain

|ψ⟩ =
∑
i,j

min(NA,NB)∑
a=1

Ui,aSa,aV
∗
j,a|i⟩A|j⟩B

=

min(NA,NB)∑
a=1

(∑
i

Ui,a|i⟩A
)
sa

(∑
j

V ∗
j,a|j⟩B

)
. (49)

From this, we can de�ne a new set of orthonormal (because U and V † are orthonormal)

states on both A and B as

|a⟩A =
∑
i

Ui,a|i⟩A (50)

and

|a⟩B =
∑
j

V ∗
j,a|j⟩B, (51)

to reach the much simpler form

|ψ⟩ =
min(NA,NB)∑

a=1

sa|a⟩A|a⟩B. (52)

However, some of the singular values can be zero, resulting in even fewer terms. Thanks

to ordering the singular values in decreasing order, it means that we need to sum up only

the �rst r ⩽ min(NA, NB) terms, where r is the rank of the original matrix. This way, we

achieved the so-called Schmidt decomposition

|ψ⟩ =
r∑

a=1

sa|a⟩A|a⟩B, (53)

where r = 1 corresponds to classical product states, and r > 1 corresponds to entangled

quantum states.
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From this form, we can carry out the partial traces easily, to reach

ρA =
r∑

a=1

s2a|a⟩AA⟨a| (54)

and

ρB =
r∑

a=1

s2a|a⟩BB⟨a|, (55)

showing that they have the same non-zero eigenvalues, with di�erent eigenvectors. This

simple form will even be present if we were to approximate ψ, since the 2-norm of ψ is

equal to the Frobenius norm of the matrix Ψ. This means that (thanks to the SVD) the

best rank r′ approximation Ψ′ of Ψ will provide the best approximation ψ′ for ψ as well.

With this approximate state, we could repeat the whole calculation to reach its Schmidt

decomposition

|ψ′⟩ =
r′∑

a=1

σa|a⟩A|a⟩B. (56)

3.2 Matrix product states

Let us assume that we have L sites, each with a d-dimensional local state space {σi}di=1.

Then, the most general pure quantum state can be written as

|ψ⟩ =
∑

σ1,...,σL

cσ1,...,σN
|σ1, . . . , σN⟩. (57)

In fact, the cσ1,...,σN
tensor of coe�cients can be equivalently rewritten in a special form

of product of matrices which representation is called matrix product state (MPS) [51].

That is, we can write it as

cσ1,...,σN
=Mσ1 · · ·MσN , (58)

where Mσi are matrices, that can have di�erent shapes (but they need to have shapes

"compatible" with the matrix multiplication). Note that the �rst (Mσ1) and last (MσN )

matrices are row and column matrices respectively (this is required so that the result of

the multiplication is a scalar).
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For the DMRG calculations, we regularly bipartion our system into A and B, with

sites 1, . . . , l being in A and l+1, . . . , L in B. For these scenarios, we introduce new basis

states

|al⟩A =
∑

σ1,...,σl

(Mσ1 · · ·Mσl)1,al |σ1, . . . , σl⟩ (59)

and

|al⟩B =
∑

σl+1,...,σL

(Mσl+1 · · ·MσL)al,1 |σl+1, . . . , σL⟩. (60)

Using these states, the MPS becomes

|ψ⟩ =
∑
al

|al⟩A|al⟩B. (61)

A Matrix Product State can be represented graphically as well, with the so-called

tensor diagram notation [52]. In Figure 8, we see the tensor diagram of an open boundary

condition MPS state, with N = 5.

Figure 8: The tensor diagram of a Matrix Product State with N = 5 and open boundary

conditions.

Every state of the form of (57) can be represented in an MPS form (with big enough

matrices), but this representation is not unique. There are several ways of construction

detailed in the article [47] using Singular Value Decompositions (SVD) repeatedly on the

coe�cients cσ1,...,σN
.

The so-called left-canonical matrix product state can be constructed by �rst doing an

SVD on the matrix Ψσ1,(σ2,...,σN ) = cσ1,...,σN
, which gives

Ψσ1,(σ2,...,σN ) =

r1∑
a1=1

Uσ1,a1Sa1,a1

(
V †)

a1,(σ2,...,σN )
. (62)
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Then, we can denote Uσ1,a1 as A
σ1
a1

and Sa1,a1

(
V †)

a1,(σ2,...,σN )
as ca1,σ2,...,σL

to get

cσ1,...,σL
=

r1∑
a1=1

Aσl
a1
ca1,σ2,...,σL

. (63)

Again, we form a matrix Ψ(a1,σ2),(σ3,...,σN ) = ca1,σ2,...,σN
, and decompose it as

Ψ(a1,σ2),(σ3,...,σN ) =

r2∑
a2=1

U(a1,σ2),a2Sa2,a2

(
V †)

a2,(σ3,...,σN )
. (64)

Similarly to before, we can denote U(a1,σ2),a1 asA
σ2
a1,a2

and Sa2,a2

(
V †)

a2,(σ3,...,σN )
as ca2,σ3,...,σL

to reach

cσ1,...,σL
=

r1∑
a1=1

r2∑
a2=1

Aσl
a1
Aσ2

a1,a2
ca2,σ3,...,σL

. (65)

Continuing this procedure, we will get

cσ1,...,σN
=

∑
a1,...,aL−1

Aσ1
a1
Aσ2

a1,a2
· · ·AσL−1

aL−2,aL−1
AσL

aL−1
= Aσ1 · · ·AσL . (66)

These Aσi matrices are left-normalized, which means that∑
σi

Aσi†Aσi = I. (67)

The right-canonical matrix product state is constructed the same way, except instead

of going from left to right, we we proceed in the reversed order. The result will be similar

to (66):

cσ1,...,σN
= Bσ1 · · ·BσL , (68)

but they will be right-normalized instead,∑
σi

BσiBσi† = I. (69)

Notice that we used the letterA for left-normalized matrices, andB for right-normalized

matrixes. This is just a convention, to make some calculations easier to follow. We can

mix the previous two decomposition as well, to achieve the so-called mixed-canonical ma-

trix product state. During the construction, we do the left-canonical decomposition of

cσ1,...,σN
up to the index l:

cσ1,...,σN
=
∑
al

(Aσ1 · · ·Aσl)al Sal,al

(
V †)

al,(σl+1,...,σL)
, (70)
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and after this, we do the right-canonical decomposition on
(
V †)

al,(σl+1,...,σL)
to reach

cσ1,...,σN
=
∑
al

(Aσ1 · · ·Aσl)al Sal,al (B
σl+1 · · ·Bσl)al (71)

= Aσ1 · · ·AσlSBσl+1 · · ·Bσl .

Note that S is the matrix containing the singular values of the site l and in this case, the

Aσi matrixes are left-normalized, while the Bσi matrices are right-normalized. In Figure 9

we see the tensor diagram of mixed-canonical MPS with N = 5 and l = 3.

Figure 9: The mixed-canonical matrix product state with N = 5 and l = 3.

We've seen 3 di�erent way of constructing an MPS from a given state, and all of

them are di�erent. But even from a given set of matrices Mσi (which can be one of

the previous 3 constructions or a totally di�erent one), we can construct a new one by

gauge transformation. Let us pick two adjacent sets of matrices: Mσj and Mσj+1 . Their

dimensions, in general, can be written as d1 × D and D × d2. If we pick an invertible

D ×D matrix X, we can transform the M matrices as

Mσj 7→MσjX and Mσj+1 7→ X−1Mσj+1 . (72)

In the article [47], there are several methods and properties derived, however, I would

like to emphasize only two of them: the inner product of two vectors and the reduced

density operators.

Given two states ψ and ϕ, which are represented by the matrices Mσi and Nσi respec-

tively, their inner product is simply

⟨ϕ|ψ⟩ =
∑

σ1,...,σL

(NσL)† · · · (Nσ1)†Mσ1 · · ·MσL . (73)

In Figure 10, we see the tensor diagram of the product of two MPSs with N = 5. Note

that they do not have any "legs" left, symbolizing that the result is a scalar.
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Figure 10: The tensor diagram of the inner product of two Matrix Product States with

N = 5.

In the special case, when ϕ = ψ, we can rewrite (73) as

⟨ψ|ψ⟩ =
∑
σl

∑
al−1,al

∑
a′l−1,a

′
l

ΨA
al−1,a

′
l−1
Mσl∗

al−1,al
Mσl

a′l−1,a
′
l
ΨB

al,a
′
l
, (74)

where l is an arbitrary site,

ΨA
al−1,a

′
l−1

=
∑

σ1,...,σl−1

(
Mσl−1† · · ·Mσl†Mσ1 · · ·Mσl−1

)
al−1,a

′
l−1

(75)

and

ΨB
al,a

′
l
=

∑
σl+1,...,σL

(
Mσl+1 · · ·MσLMσL† · · ·Mσl+1†

)
a′l,al

. (76)

This form, at the current point, might look more complicated than the initial one, but in

the special case, when the sites 1, . . . , l − 1 are left-normalized and sites l + 1, . . . , L are

right-normalized, it becomes much simpler, as

ΨA
al−1,a

′
l−1

= δal−1,a
′
l−1

and ΨB
al,a

′
l
= δal,a′l . (77)

If the system is split into A (i = 1, . . . , l) and B (i = l + i, . . . , L) parts as before, the

reduced density operators are de�ned as the partial trace of the projector of the state

ψ =
∑
σ

Mσ1 · · ·MσL|σ⟩, (78)

i.e.

ρ
[l]
A = TrB |ψ⟩⟨ψ| =

∑
σ,σ′∈A

Mσ1 · · ·Mσlϱ
[l]
AM

σ′
l† · · ·Mσ′

1†|σ⟩⟨σ′| (79)

and

ρ
[l]
B = TrA |ψ⟩⟨ψ| =

∑
σ,σ′∈B

Mσ′
L† · · ·Mσ′

l+1†ϱ
[l]
BM

σl+1† · · ·MσL†|σ⟩⟨σ′|, (80)
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where σ is just the vector of σis (i.e. (σ)i = σi) and ϱ
[l]
A and ϱ[l]B satisfy the

ϱ
[l−1]
A =

∑
σl

Mσlϱ
[l]
AM

σl† (81)

and

ϱ
[l]
B =

∑
σl

Mσl†ϱ
[l−1]
B Mσl (82)

recursive relations. These formulas can be further simpli�ed when the MPS is normalized

in a given way. When it is a mixed canonical state

ψ =
∑
σ

Aσ1 · · ·Aσl−1ΨσlBσl+1 · · ·BσL|σ⟩, (83)

we simply have

ρ
[l]
A = ΨΨ† and ρ

[l]
B = Ψ†Ψ. (84)

3.3 Matrix product operators

Along the same lines as in the previous subsection, we can de�ne a special form of oper-

ators: the matrix product operators (MPO). A general operator H can be written as

H =
∑

σ1,...,σN ,σ′
1,...,σ

′
N

cσ1,...,σN ;σ′
1,...,σ

′
N
|σ1, . . . , σN⟩⟨σ′

1, . . . , σ
′
N |, (85)

and in this case, we call the operator a Matrix Product Operator if the coe�cients have

the following form in case of open boundary conditions

cσ1,...,σN ;σ′
1,...,σ

′
N
= W σ1,σ′

1 · · ·W σN ,σ′
N (86)

for matricesW σi,σ
′
i with possibly di�erent shapess. In Figure 11, we see the tensor diagram

of an MPO with N = 5. Similarly to previous derivations, any operator can be written

in MPO form by the same procedure with the SVD decompositions, but using the (σi, σ′
i)

pair instead of the σi as indices.
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Figure 11: The tensor diagram of a Matrix Product Operator with N = 5.

If we apply the above written H operator to a state ψ represented by the matrices

Mσi , we get the following:

H|ψ⟩ =
∑

σ1,...,σN ,σ′
1,...,σ

′
N

W σ1,σ′
1 · · ·W σNσ′

NMσ′
1 · · ·Mσ′

N |σ1, . . . , σN⟩ (87)

=
∑

σ1,...,σN

Kσ1 · · ·KσN |σ1, . . . , σN⟩

where the Kσi matrices are de�ned as

Kσi

(bi−1,ai−1),(bi,ai)
=
∑
σ′
i

W
σi,σ

′
i

bi−1,bi
M

σ′
i

ai−1,ai . (88)

Which means that an MPO leaves the form of the MPS invariant, however, it increases

its matrix size. In Figure 12, we see the tensor diagram of the product of an MPO and an

MPS with N = 5 and open boundary conditions. Notice that this diagram is equivalent

to the one in Figure 8.

Figure 12: The tensor diagram of a Matrix Product Operator applied to a Matrix

Product State with N = 5.
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If |ψ⟩ is in a mixed canonical representation

|ψ⟩ =
∑

al−1,al

|al−1⟩AΨσl
al−1,al

|al⟩B, (89)

the matrix elements of the operator H, after a straightforward but lengthy calculation,

can be written as

⟨al−1σlal|H|a′l−1σ
′
la

′
l⟩ =

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R

al,a
′
l

bl
, (90)

where L and R are the so-called L- and R-expressions:

L
al−1,a

′
l−1

bl−1
=

∑
{ai,bi,a′i;i<l−1}

l−1∏
k=1

∑
σk,σ

′
k

Aσk∗
ak−1,ak

W
σk,σ

′
k

bk−1,bk
A

σ′
k

a′k−1,a
′
k

 (91)

and

R
al,a

′
l

bl
=

∑
{ai,bi,a′i;i>l}

L∏
k=l+1

∑
σkσ

′
k

Bσk∗
ak−1,ak

W
σk,σ

′
k

bk−1,bk
B

σ′
k

a′k−1,a
′
k

 . (92)

Using this, the expectation of the operator H at state |ψ⟩ can be written as

⟨ψ|H|ψ⟩ =
∑
σl,σ

′
l

∑
a′l−1,a

′
l

∑
al−1,al

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R

al,a
′
l

bl
Mσl∗

al−1,al
M

σ′
l

a′l−1,a
′
l
. (93)

At this point, it might appear as a great theoretical tool useful for proofs only, but,

in fact, expressing an operator in its MPO state is usually possible. To see a concrete

example, let us assume that we have a chain of spins with length L, and a Hamiltonian

H =
L−1∑
i=1

(
J

2
S+
i S

−
i+1 +

J

2
S−
i S

+
i+1 + JzSz

i S
z
i+1

)
− h

L∑
i=1

Sz
i . (94)

This form is quite compact, but to reach the MPO representation, the complete tensor

product form is more convenient. In this form, the third term of the Hamiltonian is

H3 = JzSz ⊗ Sz ⊗ I ⊗ I . . .⊗ I (95)

+ I ⊗ JzSz ⊗ Sz ⊗ I . . .⊗ I

+ I ⊗ I ⊗ JzSz ⊗ Sz . . .⊗ I

+ . . . .

To simplify further the calculation, let us introduce a new operator-valued matrices of the

form

W
[i]
b,b′ =

∑
σ,σ′

W σ,σ′

b,b′ |σ⟩⟨σ
′|, (96)
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which acts on the i-th site's local Hilbert space. Using them, the Hamiltonian can simply

be written as

H = W [1] · · ·W [L]. (97)

To construct the operator-valued matrices W [i], we need to go over the possible operator

combinations in the Hamiltonian. Each term contains one or two neighbouring non-

identity operators, and the rest to its left and right are (possibly zero) identity operators.

This means that if we go from the rightmost site, we will have (possibly zero) identity

operators, then a non-identity operator, followed by either another non-identity operator

or an identity operator, and �nally (possibly zero) identity operators. So if we pick a site

not at the edges, it can have 5 di�erent "states":

1. there are only identity operators on the right

2. there is an S+ on the right

3. there is an S− on the right

4. there is an Sz on the right

5. there is a completed interaction or �eld term (−hSz) somewhere on the right.

With these numberings, the following transitions are allowed between two neighbouring

sites: 1 → 1 by the identity operator I; 1 → 2 by S+ as that is the only way we will have

exactly S+ on the right at the next site; similarly 1 → 3 by S− and 1 → 4 by Sz, and

1 → 5 by −hSz, as that is the only way we can have a single non-identity operator; and

we can also �nish the interactions with 2 → 5 by (J/2)S−; 3 → 5 by (J/2)S+; 4 → 5

by JzSz; or 5 → 5 by the identity operator I. The matrices for the �rst and last sites

can be constructed with the same mentality, with them being a row and column matrices

respectively.
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This can be formulated with the matrices

W [i] =



I 0 0 0 0

S+ 0 0 0 0

S− 0 0 0 0

Sz 0 0 0 0

−hSz (J/2)S− (J/2)S+ JzSz I


(98)

for i = 2, . . . , L− 1 and at the ends

W [1] =
[
−hSz (J/s)S− (J/2)S+ JzSz I

]
, W [L] =



I

S+

S−

Sz

−hSz


. (99)

This is, of course, not exactly in the previously introduced form at this point. However,

it is a substitution of the explicit representations of the appearing operators away from

it.

3.4 Details of the algorithm

After the introduction of the necessary mathematical tools in the previous subsections, in

this subsection we are covering the main numerical tool used in our research, the DMRG

algorithm. The algorithm can be formulated in alternative ways; in this section we will

show the one using Matrix Product States and Operators [47].

The goal of the algorithm is to �nd a state |ψ⟩ that minimalizes the energy

E =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

(100)

for our Hamiltonian H. This can be formulated as a slightly di�erent problem with the

method of Lagrange multipliers: it is equivalent to �nding the extrema of

L = ⟨ψ|H|ψ⟩ − λ⟨ψ|ψ⟩. (101)

33



If we substitute (74) and (93), we get a highly non-linear optimization problem in the

matrix elements Mσ
a,a′ . At �rst glance, it seems to be an impossible problem to solve,

but it can be done iteratively: if we �x one but all l at a time, we will achieve a linear

problem. To do this, we can take the extremum of the Lagrangian L with respect to

Mσl∗
al−1,al

to achieve∑
σ′
l

∑
a′l−1,a

′
l

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R

al,a
′
l

bl
M

σ′
l

a′l−1,a
′
l
− λ

∑
a′l−1,a

′
l

ΨA
al−1,a

′
l−1

ΨB
ala

′
l
Mσl

a′l−1,a
′
l
= 0. (102)

Assuming that the sites i = 1, . . . , l−1 are left-normalized, while the sites i = l+1, . . . , L

are right-normalized, it can be further simpli�ed to the core eigenvalue problem of the

DMRG method

Jv − λv = 0, (103)

where we introduced the matrix J as

J(σl,al−1,al),(σ
′
l,a

′
l−1,a

′
l)
=
∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R

al,a
′
l

bl
(104)

and the vector v as

v(σl,al−1,al) =Mσl
al−1,al

. (105)

The DMRG method implements this iterative method the following way: �rst, we

start from an initial state

ψ =
∑
σ

Bσ1 · · ·BσL|σ⟩ (106)

with right-normalization. Then, we calculate the R-expressions iteratively from L− 1 to

1. After this, we start a so-called "sweep":

� Do a "right-sweep" from l = 1 to l = L − 1 (with increasing l by one after each

one).

� Do a "left-sweep" from l = L to l = 2 (with decreasing l by one after each one).

and repeat it until we reach the desired accuracy, which is usually quanti�ed by the

variance of the ground state energy:

∆ = ⟨ψ|H2|ψ⟩ − (⟨ψ|H|ψ⟩)2 . (107)
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A single iteration of the "right-sweep" performed at a given index l is summarized in

the following steps:

� Solve the eigenproblem Jv − λv = 0, which is equivalent to varying Mσl (which

was Bσl initially, but it will loose its right-normalization during the procedure) and

keeping the other matrices constant (this is usually done by the Lanczos or the

Jacobi-Davidson algorithm).

� Once Mσl is obtained, we left-normalize it to Aσl with SVD. This is where the

approximation happens: we have a mixed-canonical MPS, and we approximate the

state by keeping only the D the biggest singular values of S, where D is referred to

to as bond-dimension in the literature (using the notation from (71)).

� There will be some remaining matrices from this normalization. We multiply it to

Mσl+1 and use it for the starting guess for the next iteration.

� We add 1 more site to the L-expression iteratively.

In the "left-sweep", similar algorithmic steps are performed as in the "right-sweep".

The di�erence is that we right-normalize the active matrix instead, and move the "residue"

into the left-most matrix. In this procedure, we also update the R-expression instead of

the L-expression.

From this "recipe", we might wonder why was this method named DMRG, when the

density matrices are not appearing anywhere for the �rst glance. However, it is there at

the heart: the non-zero eigenvalues of the density matrix are equal to the singular values

of the matrices during the SVDs. However, White in his original paper [46] did not use

MPOs and MPSes, but used the density matrices directly to discard low-contribution

states. The two methods are identical, but White used physical reasoning for the density

matrix, while in this newer recipe, it comes naturally.
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Finally, a few remarks about the scaling of the DMRG. Considering a lattice quantum

model of N sites where each site has d degrees of freedom, the naive calculation of the

ground state scales as d2N . Contrary to this unfavorable exponential scaling of exact

eigendecompostion, one �nds that the diagonalization of the e�ective DMRG Hamiltonian

is typically the computationally most demanding step of the DMRG procedure [53], which

might still provide only an overall polynomial scaling. In particular, for low-dimensional

gapped models with short-ranged interactions, DMRG scales as a modest polynomial of

the retained bond dimension, i.e. it scales as ND3. As the bond dimension D ranges

between N and N2 in most typical calculations, we �nd that DMRG scales as N4 in the

best case, and as N7 in the worst case for the investigated problems.

3.5 Quantum numbers

The applied DMRG implementation is capable to treat the conserved quantum numbers

of the investigated model (i.e. spin projection and particle parity) in the calculations.

Taking into account these symmetries explicitly in the calculations has several advan-

tages. It made possible for us to look for states with given quantum numbers, as well as

increased the computational speed by lowering the dimension of the Hilbert space con-

taining the solution. Another advantage of this is that states with di�erent quantum

numbers are di�erent, so it can provide a relatively cheap (in terms of resource usage)

way for computing excited states.

3.6 Initial state guesses

During our DMRG calculations, as I mentioned in the previous subsection, we needed to

set up the initial state with the appropriate quantum numbers. Choosing a good initial

state, however, has other advantages too, as it can speed up the calculations and avoid

the possibility to �nd a local minimum instead of the global minimum.

As the system we applied the DMRG to was a ladder with sites on two sides containing

half-spin fermions, we had chosen the initial state accordingly. This choice could be done

in several ways; we decided to start with a chessboard and possibly modify some sites

to achieve the desired quantum numbers. I will show one example with N = 6. As the
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parity was a conserved quantity, we needed to construct even and odd initial states. In

the case of even, we were only looking for S = 0 solutions, as they were the ones with the

lowest energies. As the chessboard has Sz = 0 already, we didn't need to modify it at all.

The example, with arrows indicating the spins' direction, can be see in Figure 13.

Figure 13: The even initial state for N = 6. The top row in the boxes represents the L

side, while the bottom the R side.

The odd parity subspace was a little di�erent, as both the Sz = 1/2 and Sz = −1/2

subspaces were containing the states we were looking for. For these two subspaces, we

started from the same chessboard pattern, as it was mentioned before, but added an extra

electron for one of them, and removed one for the other one, as can be seen in Figure 14.

Figure 14: The odd initial states for N = 6. The top row in the boxes represents the L

side, while the bottom the R side. The left �gure is the Sz = 1/2, while the right is the

Sz = −1/2.

As it was mentioned before, we were able to restrict the algorithm to a given subspace

with speci�c quantum numbers. Because of this, we were looking for even and odd parity

states separately. In the even subspace, the lowest energy states were expected to be

in the Sz = 0 subspace, while in the odd subspace, they were expected to be in both

Sz = 1 and Sz = −1 subspaces. In all of the constant Sz subspaces, calculating the n-th

state (starting from n = 1) requires orthogonalization to the previous n− 1 states. This

basically halves the required orthogonalization required to calculate a given amount of

odd states, compared to the even ones.
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This initial guess was a reasonably good start, but still far from the exact solution. At

this point, the DMRG algorithm wasn't always successful in �nding the global minimum,

as in rare occasions, it got stuck in a local minimum. This problem could simply be solved

by just calculating more excited states, as it would remove eventually the "close" local

minima from the way, but it is quite costly if we do not want the higher excited states.

However, the DMRG implementation we used makes it possible to add random noise to

the sweeps, to avoid these problem. We found that adding a small noise to the �rst few

sweeps has removed most of our "local minima" problems, and the remaining ones were

eliminated by calculating an extra excited state (which, as a side-note, were useful to have

in some cases).

3.7 Finding the excited states

The DMRG method itself is a tool for calculating the ground state of the system, but

we needed excited states as well. I've already mentioned that picking di�erent quantum

numbers and conserving them is a speci�c method to get excited states, but they aren't

general enough, as there are several orthogonal states with the same Sz. Luckily for

us, there are other, not too complicated ways to get around this obstacle, for example

the ITensor software circumvents it by adding the projector to the previous state to the

Hamiltonian with a big enough coe�cient [49]. In mathematical terms, if |ψ0⟩ is the

ground state of the Hamiltonian H with energy E0, i.e. H|ψ0⟩ = E0|ψ0⟩, then a new

Hamiltonian H ′ can be de�ned as

H ′ = H +K|ψ0⟩⟨ψ0|, (108)

for some constant K. This new Hamiltonian will still have ψ0 as its eigenstate, but with

eigenvalue E0 + K. However, this extra term will not change anything about the other

eigenstates orthogonal to it. The consequence of this is that if we choose K appropriately,

we can make E0 +K > E1, where E1 is the �rst excited state's energy, making the �rst

excited state the ground state of our new Hamiltonian. By default, K = 1 is set in the

code, which was good in most of the cases, but in rare occasions, we faced an issue with

the new state ψ1 being just a rotated version of ψ0, i.e. ψ1 = eiϕψ0 for some ϕ ∈ R. In

these cases, a bigger K solved the issue, at a price of a slightly slower runtime.
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3.8 Maximum matrix dimension

The DMRG implementation we used provided a way to set the maximum possible di-

mension for the matrices in the MPS representation during the calculation (it is called

"maximum link dimension", but sometimes it is also referred to as "maximum bond di-

mension" in the literature). The higher we go in dimensions during calculations the slower

it will be in general, so it is better to keep it as low as possible. Because of this, the algo-

rithm itself tries to use the smallest possible dimensions to achieve the desired accuracy,

so this maximum isn't reached every time. However, reaching the given maximum can

indicate a problem, because in this case, the algorithm might not be accurate enough to

describe the given state. To avoid this possibility as much as possible, we decided to set

it to 2000. This number was heuristic: during our initial calculations, we noticed that a

few hundred is good in a lot of situations, but sometimes we need over 1000, however, it

started to get really slow above 2000.

The maximum matrix dimension is a good indicator of the complexity of the state, as

the longer the correlations are, the bigger the matrices we need to represent it accurately.

At the phase borders, the correlation lengths might become divergent, which would result

in singular maximum matrix dimensions. That is, we can expect to see divergent-like

behaviour (as we both limit it's maximum and stop the algorithm after going below a

given error) of the maximum matrix dimension at the phase borders, making it possible

to create phase diagrams.
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4 Synthesis

In this section, we describe a model capable of capturing the essential properties of the

edge state of the topological insulators, while being moderate in size enough so that the

DMRG algorithm can solve it e�ectively. We examine this model's ground state degener-

acy, and explore its di�erent phases in terms of interaction strength and superconducting

pair potential. Finally, we characterise the degenerate ground state by local quantities.

4.1 The investigated model

As it was brie�y mentioned in section 1, we wanted to create a model that can be handled

e�ciently by the DMRG. Because of this, we needed to construct an e�ectively one-

dimensional system, as that is the territory where the algorithm shines. We are discussing

the di�erent parts of our interacting Hamiltonian in this subsection.

4.1.1 Ladder kinetic term

We needed a kinetic term that is quasi-one-dimensional, but in the low-energy limit, it

resembles a topological insulator's edge states shown in (35). This is necessary, as the

superconductor would e�ect the edge states of the system. This can be achieved with a

ladder Hamiltonian

Hk =
∑
n,σ

[
c†n,L,σ c†n,R,σ

]−µ t

t −µ

cn,L,σ
cn,R,σ


− t

2

∑
n,σ

[c†n+1,L,σ c†n+1,R,σ

]iσ 1

1 −iσ

cn,L,σ
cn,R,σ

+ h.c.

 , (109)

where t is a real parameter and we introduced a new degree of freedom ζ, which we

interpret as 2 sides of the ladder. Because of this, it can have two di�erent values: L

(left) and R (right). We also used the convention σ =↑= 1 and σ =↓= −1. In Figure 15,

we have the hopping terms displayed.
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Figure 15: The hoppings in the kinetic term.

This model could be interpreted physically as a ladder construction, but for the DMRG

calculations, which optimizes the problem by iterating through a list of sites, we map the

Hamiltonian into a one-dimensional chain: (1, L) 7→ 1, (1, R) 7→ 2, . . ., (N,L) 7→ 2N − 1,

(N,R) 7→ 2N .

The Hamiltonian was constructed this way so that its low-energy continuum approxi-

mation is equivalent to the low energy continuum approximation of the edge states of the

BHZ model. To prove this, we calculate the EFA for this Hamiltonian. But �rst, let us

introduce a new vector containing the annihilation operators on the same side

cn =


cn,L,↑

cn,R,↑

cn,L,↓

cn,R,↓

 . (110)

With this vector, we can rewrite (109) as

Hk =
∑
n

c†n

(
− µs0 ⊗ ζ0 + ts0 ⊗ ζx

)
cn

− t

2

∑
n

c†n+1

(
isz ⊗ ζz + s0 ⊗ ζx

)
cn + h.c., (111)

where we used the previously introduced notation for the Pauli-matrices: si is acting

on the spin degree of freedom, and ζi is acting on the "side" degree of freedom. Taking

the Fourier transform of (111), our bulk momentum-space Hamiltonian will read

Hk(k) = −µs0 ⊗ ζ0 + ts0 ⊗ ζx + t sin(k)sz ⊗ ζz − t cos(k)s0 ⊗ ζx. (112)
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Now we are ready to expand it around k = 0 to �rst order, achieving the low energy

continuum approximation

Hk,1(p) = −µs0 ⊗ ζ0 + tpsz ⊗ ζz, (113)

which means that the two sides are separated, as well as the two spins.

Thus, in formula (113) we veri�ed that the low-energy physics of this ladder Hamilto-

nian can be identi�ed with the one of the BHZ model's edge states, shown in (35).

4.1.2 Superconductivity

The e�ect of the attached superconductor can be treated in mean-�eld approximation by

Cooper-pair creation and annihilation on the appropriate sites by the Hamiltonian

Hsc =
∑
n,ζ

∆n,ζ

[
c†n,ζ,↑c

†
n,ζ,↓ + h.c.

]
, (114)

where the strength and the location of the superconductivity can be controlled by the pa-

rameters ∆n,ζ . This term describes conventional s-wave superconductors readily available

in an experimental setting. Note that this term conserves the total spin, but it does not

conserve the electron number, but only the electron number parity.

4.1.3 Magnetic �eld

Similarly to the case of the BHZ model, we can add magnetic �eld to this model as well,

to �nd Majorana Zero Modes. The magnetic �eld's Hamiltonian can be written as

Hm =
∑
n,ζ

[
c†n,ζ,↑ c†n,ζ,↓

] (
Bn,ζ · s

)cn,ζ,↑
cn,ζ,↓

 , (115)

where Bn,ζ is the three-dimensional magnetic �eld vector and s is the three-dimensional

vector containing the 2× 2 Pauli-matrices acting on the spin degree of freedom.
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Both the superconductivity and the magnetic �eld can open a gap in the excitation

spectrum, if it is added to the kinetic term, as it is shown in Figure 16 with Bn,ζ = [1, 0, 0]

and ∆n,ζ = 1. Here, we need to clarify two things. Firstly, the kinetic term alone and the

kinetic term with magnetic �eld would not require the BdG transformation, however, it

makes the comparison of spectra easier. Secondly, we can see 4 zero energy states when

we apply magnetic �eld. However, these states are not MZMs, as they are not their own

particle-hole partner, and unlike MZMs, they can be moved away from zero by applying

chemical potential to the system.
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eigenstate index
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kinetic
kinetic + magnetic field
kinetic + superconductivity

Figure 16: The BdG spectrum of the kinetic term only (blue), the kinetic term with

magnetic �eld (red) and the kinetic term with superconductivity (green).

To see the MZMs, we can open the BdG gap in the whole system by putting magnetic

�eld on one part of it, while superconductivity on the other one in a way that we create

two domain walls. This way, the MZMs will appear at the domain walls. We can see

an example in Figure 17: here, we have a ladder with length N = 48, with magnetic

�eld Bn,ζ = [1, 0, 0] in the middle of the left side {n = 13, . . . , 36} and superconductivity

∆n,ζ = 1 on the other parts (i.e. on the whole right side and at the bottom and top of the

left side). On the left, we can see the BdG spectrum, and on the right, the probability

density at each site, on both sides (the domain walls are the sites n = 13 and n = 36).

We can see that the probability density peaks at the domain walls, but with an order of

magnitude bigger contribution on the left side, where the domain wall actually is.

43



0 50 100 150 200 250 300 350 400
eigenstate index

3

2

1

0

1

2

3

E B
dG

The spectrum

190 200
eigenstate index

1

0

1

E B
dG

energies
displayed MZM

0 10 20 30 40 50
n (site index)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|
(n

)|2

probability density
of the displayed MZM

left
right
domain wall

Figure 17: The BdG spectrum of a ladder (left) and the probability density of an MZM

on both sides (right) with length N = 48, with magnetic �eld Bn,ζ = [1, 0, 0] in the

middle of the left side {n = 13, . . . , 36} and superconductivity ∆n,ζ = 1 on the other

parts.

4.1.4 Interaction

Two-electron backscattering interaction can simply be implemented by �ipping two ad-

jacent, opposite spins, as it changes their propagating direction. That is, the interaction

can be de�ned as

Hint =
∑
n,ζ

Vn,ζ

[
c†n,ζ,↑cn,ζ,↓c

†
n+1,ζ,↓cn+1,ζ,↑ + h.c.

]
, (116)

where Vn,ζ are real parameters, characterising the interaction. Note that this term is

slightly di�erent than the interaction sketched in Figure 2. They both conserve the

electron number, but the interaction (116) conserves the total spin as well.

4.1.5 The complete model

For our complete model, we took the ladder kinetic Hamiltonian (109) and added super-

conductivity with (114) and interaction of the form (116), i.e. the systems we examined

had their Hamiltonians of the form

H = Hk +Hsc +Hint. (117)
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4.1.6 Di�erent con�gurations

We've examined two di�erent con�gurations denoted by con�guration A and B. For con-

�guration A, we put constant superconductivity on the right side, i.e. ∆m,ζ = δζ,R∆

(where ∆ is a real constant and not the matrix with elements ∆m,ζ), and interaction

on the left side, i.e. Vm,ζ = δζ,LV (where V is a real constant and not the matrix with

elements Vm,ζ). For con�guration B, we stayed with the superconducting right side, i.e.

∆m,R = ∆, but "replaced" the interaction on the two edges of the left side with super-

conductivity, creating two domain walls. More formally, for an appropriately small p, we

set

∆m,L = ∆

p∑
i=1

(
δm,i + δm,N+1−i

)
(118)

and

Vm,L = V

N−p∑
i=p

δm,i, (119)

i.e. there are p sites at both ends of the left side with superconductivity, and every

site between them (including the middle most superconducting sites) are connected by

interaction. For N = 8 and p = 3, the two con�gurations can be seen in Figure 18, with

the kinetic terms not shown.

Figure 18: Sketch of con�guration A (left) and con�guration B (right) for N = 8 and

p = 3, without the kinetic term.
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For both con�guration A and B, we set t = 1, i.e. we measured everything in units

of t. Although we only report here results obtained for µ = 0, further calculations show

that the discovered degenerate ground state remains intact at �nite chemical potential.

4.2 DMRG spectrum

Our exploration started with the ground state degeneracy of con�guration A. In �gure

Figure 19, we see the �rst 7 excitation energies our model with �xed ∆ = 0.7 and N = 20,

as a function of V We see that there is an interval around V ≈ 1.75, where the ground

state is 4-fold degenerate, and the �rst excited state is at least 4-fold degenerate. Even

though we don't show it here, we have that the region with small interactions behaves

like a metal, i.e. states are getting denser and denser as system size increases.
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Figure 19: The �rst 7 excitation energies of our model with �xed ∆ = 0.7 and N = 20,

as a function of V .

To examine further the degeneracy in the middle region, the next step was to check

how the degeneracy behaves as the system gets bigger and bigger. And, as we expected,

the degeneracy of the �rst 4 states, as well as the next fours, gets exponentially exact as

the size increases. This process is shown in Figure 20 for V = 1.6 and ∆ = 0.7.
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Figure 20: The �rst 3 excitation energies (left) and the next 4 excitation energies (right)

as a function of the model length N with V = 1.6 and ∆ = 0.7.

4.3 2D phase diagram

To examine the di�erent phases of the system, we can look at the standard deviation of the

4 lowest energies. This is a good indicator of the presence of the 4-fold degeneracy in the

sense that the standard deviation is zero if and only if they are all equal. An interesting

"byproduct" of the necessary DMRG calculations is the maximum matrix dimension

during the sweeps, for a given set of parameters. As it was mentioned in subsection 3.8,

it can be used to elucidate a phase diagram as a big maximum matrix dimension is an

indicator of divergent correlation lengths. In Figure 21 we see the previously mentioned

standard deviation as a function of the two system parameters ∆ and V and the maximum

matrix dimension of the lowest energy even parity state as a function of the same system

parameters.
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Figure 21: The standard deviation of the 4 lowest energies (left) and the maximum

matrix dimension of the lowest energy even parity state (right) as a function of the

system parameters.

In Figure 21 we �nd that in the investigated domain of (V,∆) ∈ [0, 4] × [0, 2], the

system has several distinct phases according to the maximum matrix dimension analysis.

More importantly, in the middle section, the ground state is at least fourfold degenerate,

implying a possibility to have parafermions there.

4.4 Local quantities

The next thing to examine is con�guration B with domain walls. For this, we picked a

point inside the middle section of the phase diagram, namely ∆ = 0.7 and V = 1.75, and

we set the length of the ladder to N = 48, with p = 12.

In this case, the ground state is four-fold degenerate, with 1 electron in each site in

all four ground states, in the sense that

⟨ψi|c†m,ζ,↑cm,ζ,↑ + c†m,ζ,↓cm,ζ,↓|ψj⟩ = δi,j (120)

for the four degenerate ground states {ψ1, ψ2, ψ3, ψ4}, both sides ζ ∈ {L,R} and all sites

m = 1, . . . , N . This means that the four di�erent ground states cannot be distinguished

by means of local electric probes. Note that this indistinguishability is present in non-

zero chemical potential as well, but the equality in (120) is replaced by proportionality.

However, looking at the magnetization, as it can be seen in Figure 22, we are able to
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distinguish the four ground states: on the left side of the ladder, where we have the two

domain walls, they have two big peaks, with di�erent signs. It also e�ects the right side

of the ladder, due to the connection via the kinetic term, but it is 2 orders of magnitude

smaller. This di�erence in the magnetization has a serious consequence: the fourfold

degeneracy can be broken by external magnetic �eld (which would also break the TRS).
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Figure 22: The magnetization of the fourfold degenerate ground state on the two sides

of the ladder with con�guration B.

We also look at the matrix elements of the annihilation/creation operators between

two distinct states. Figure 23 shows that if we put in (or remove) an electron in (from)

the initial state, where will it show up in (disappear from) the �nal state. And, as it turns

out, these quantities are a good indicator of the localization of the MZMs [54], and for

parafermions as well, by using similar arguments.
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Figure 23: The matrix elements of the annihilation/creation operators with the fourfold

degenerate ground states with con�guration B.

4.5 Interpretation

Our results suggest that with moderately strong interaction, we have the fourfold degener-

acy required to observe parafermions. The degenerate ground states are protected against

electrostatic noises, in the sense that the degeneracy cannot be broken by electrostatic

potential. Even though we did not show it explicitly, this protection is present when we

have non-zero chemical potential as well. Both the magnetic expectations shown in Fig-

ure 22 and the matrix elements of the annihilation/creation operators shown in Figure 23

a�rms that the degenerate ground states are located at the domain walls. These are

promising signs for parafermions, but they are not enough to be 100% certain about it.

Another possibility could be that the excitations at the interfaces are not parafermions,

but Majorana Kramers doublets, as they can show similar signatures [55]. To decide

between the two possibilities, we will need to do more characterisations, for example we

will need to analyse the Josepson current between two separate superconductor parts.
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5 Summary and outlook

In this thesis, we looked at how to create Majorana zero modes on the edge states of

topological insulators with the BdG formalism. We introduced an e�ective microscopic

model, which can possibly host, in the presence of strong interaction, parafermions, the

generalization of the Majorana zero modes. We found convincing signs for the existence

of those parafermions with DMRG calculations. We also created a phase diagram for our

model as a function of the strengths of the superconductivity and the interaction, and

identi�ed a parameter region with fourfold degeneracy. Finally, we characterized these

fourfold degenerate ground states by local quantities and showed that these excitations

are localized at the interface of superconducting and interacting regions, with topological

protection.

In the future, we are planning to continue this research, hence we have already laid

out the direction of our exploration. We are planning to completely characterize the

presented exotic states, for example by studying Josephson currents. We are also going

to try several other interaction terms. An interesting choice is

Hint =
∑
n,ζ

Vn,ζ

[
c†n,ζ,↑cn,ζ,↓c

†
n+1,ζ,↑cn+1,ζ,↓ + h.c.

]
, (121)

which, similarly to our current one de�ned in (116), �ips spins in neighbouring sites,

but instead of �ipping two opposite ones, it �ips two identical ones. Note that this

is the interaction sketched in Figure 2. And �nally, we are also going to study how the

decoherence due to excited states impacts logical qubits de�ned in the ground state during

the movement of the interface region required for braiding. This time evolution will also

be simulated by matrix product states [56].
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