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Abstract

Quantum information processing technologies aim to revolutionize the way we

communicate, encrypt information and simulate physics. Optical processing of

quantum information is one of the most established and promising technologies

for the realization of quantum computation due to advancements in integrated

photonics in the last decade. In this context, usually qubit based single-photon en-

codings are considered, however, photonic systems also naturally allow for qudit

based information processing. This thesis investigates multi-rail qudits defined by

the possible photon number states of a single photon in d > 2 optical modes, pro-

vides a numerical method for constructing many-qudit gates using linear optics and

photon number resolving detectors and explores the use of qudit cluster states for

solving d-ary combinatorial optimization problems. The resource advantage of the

multi-rail qudit encoding over the dual-rail qubit encoding is demonstrated on the

k-coloring problem.
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Chapter 1

Introduction

Classical computers are an integral part of modern scientific research and currently they

are the best tools to study large and complex physical systems. However, even the exact

simulation of few-body quantum mechanics is out of reach using classical computing,

only quantum mechanical systems with a small number of degrees of freedom can be

simulated exactly.

The fundamental limitations of classical information processing regarding the sim-

ulation of quantum systems were already evident in the early days of scientific com-

puting, and for this reason, Richard Feynman proposed a new type of computer, the

quantum computer [1]. The computer he proposed was a universal quantum simulator,

a quantum system over which its user has great control and thus could imitate any other

quantum system by evolving the simulator in the same manner as the system of interest

would evolve.

Feynman proposed the quantum computer to simulate physics, but soon other com-

putational problems were discovered, which could be solved more efficiently on quan-

tum computers than on classical ones. The most famous example of such a problem

is the factorization of integers. Currently no classical algorithm is known which could

factorize integers in polynomial time. It is believed that no polynomial algorithm exists

to solve this problem, so much so, that we rely on this property of integers to keep our

sensitive information secret.

Although there is no known classical polynomial time algorithm for integer factor-

ization, there is a quantum polynomial time algorithm discovered by Peter Shor [2].
Shor’s algorithm is exponentially faster than the best classical algorithm we have for

integer factorization. This means, that with a sufficiently large quantum computer it

would be possible to break the RSA 2048-bit encryption within days [3].

While there are many problems where it is possible to achieve superpolynomial or

polynomial speed up over classical algorithms using quantum computers, they are not a
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CHAPTER 1. INTRODUCTION

replacement for classical computers, but tools to solve specific computational problems.

Due to the premise of quantum computing, the development of quantum comput-

ers and quantum algorithms has been an active research area for the last few decades,

and huge investments have been made into this area of research by industry leading

companies and governments. Because of this effort, many quantum computer architec-

tures have been invented and experimentally realized, e.g., superconducting and pho-

tonic quantum computers. Furthermore, several milestones have been reached towards

quantum supremacy [4–7] and fault-tolerance [8–10], however, despite the successes

and breakthroughs, a scalable and fault-tolerant architecture is yet to be built.

Currently every architecture has its benefits and disadvantages, and there is no clear

winner amongst the proposed designs, i.e., it is difficult to say which design idea, if any

of them, will eventually develop into a useful quantum computer. The design goals that

every architecture should aim for were summarized by David DiVincenzo [11] in five

points:

1. A scalable physical system with well characterized qubits or qudits.

2. The ability to initialize the state of the qubits into a simple state.

3. Long relevant decoherence times.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

All the points above were addressed by physical implementations, but currently there

is no realization of a quantum computer which satisfies them simultaneously. For ex-

ample, most superconducting devices satisfy the second, fourth and fifth points, but

scalability and decoherence is an issue for them, while integrated photonic devices [12]
are more scalable and lack the same kind of decoherence phenomena, but realizing a

universal gate set is difficult with photonics due to the absence of interaction between

photons.

Photonic quantum computation is one of the most established and promising ways

to do quantum information processing. In recent years, many advancements have been

made in integrated photonic quantum technologies. Integrated quantum photonic pro-

cessors with on-chip linear optics [13, 14], single photon sources [15–17] and photon

number resolving detectors (PNRD) [18–21] have been demonstrated. These integrated

components and waveguides are usually printed onto silica, which makes it possible to

miniaturize the chips and increase the number of on-chip components. Since photons

couple very weakly to their environment, integrated quantum photonic processors typ-

ically do not require millikelvin temperatures to operate as opposed to other quantum

information processing architectures like superconducting devices [22].
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CHAPTER 1. INTRODUCTION

There has been considerable experimental progress towards photonic quantum su-

premacy via boson sampling (see, for example, Refs. [5–7]), however, the realization

of universal photonic quantum computation still seems far from reality. This is because

linear optics alone cannot be used to produce certain multi-photon states which are

required in some form by all universal photonic schemes.

The most well-known universal photonic scheme is the KLM scheme [23] which

solves the problem of creating entanglement between photonic qubits by applying post-

selection based on ancilla measurements. This makes it possible to prepare entangled

two qubit states non-deterministically using only linear optics and PNRDs. This mea-

surement-based method combined with the quantum teleportation of qubits was shown

to be able to create near-deterministic two qubit gates. However, the complete imple-

mentation of the KLM scheme proved to be out of reach with current technology, and

only some of its techniques have been demonstrated experimentally.

Another approach for realizing universal quantum computation is to use measure-

ment-based quantum computation (MBQC) [24]. In MBQC the quantum algorithms are

performed by making single-qubit measurements on a large, entangled state, usually a

cluster state [25,26]. For photonics MBQC provides a resource efficient and determin-

istic way to implement universal quantum computation.

Encoding information in single-photon states has the advantage, that beyond photon

loss due to light-matter interactions, there is no decoherence. The generation [27, 28]
and detection [29] of single-photon states is possible with high fidelity and efficiency,

thus single-photon information protocols are close to becoming viable.

Usually single-photon states are used to encode two-level systems, however, they

can also encode d > 2 level systems called qudits [30]. Qudits have been considered in

many areas of quantum computation, for example in topological quantum computation

the braiding of Zd parafermions [31] provides a natural way to implement qudits [32].
There also have been attempts to realize superconducting qudits [33, 34], but because

of the flexibility in how photon states can be interpreted, qudits are most prominent in

photonics [35–40]. The use of qudits increases the number of dimensions per computa-

tion unit. This property of qudits in theory can provide some benefits over qubit systems

by reducing circuit complexity of quantum algorithms or by increasing the channel ca-

pacity and noise tolerance of communication protocols [41,42].

This thesis aims to discuss and answer questions related to single-photon encoded

multi-rail qudits and explore the possible resource benefits of using them. The two main

topics of this thesis are the construction of entangling many-qudit gates and solving d-

ary combinatorial optimization problems using qudit clusters states.

The construction of entangling gates is necessary for universal quantum computa-
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CHAPTER 1. INTRODUCTION

tion, however, entangling qubits or qudits encoded by photons is difficult because of the

absence of photon-photon interaction. In experiments either matter mediated interac-

tions, e.g., the cross Kerr effect [43], or a measurement induced nonlinearity is used to

create entanglement between photonic qubits. The latter method only requires linear

optics and PNRDs to implement and can also be used to entangle photonic qudits. In

Sec. 4.2 a method is presented for calculating interferometer configurations for locally

optimal non-deterministic many-qudit gates.

As for the other topic of this thesis, d-ary combinatorial optimization problems come

up in many areas of study, e.g., in biology [44] and in graph theory. It is conjectured that

the Quantum Approximate Optimization Algorithm (QAOA) [45] can perform better

than classical algorithms solving combinatorial optimization problems. One of the most

famous examples of combinatorial optimization problems is the k-coloring problem.

The k-coloring problem has important applications in scheduling [46] and compiler

theory [47]. In Sec. 4.3 a qudit cluster state implementation of the QAOA is presented

to solve the k-coloring problem, and in that context, the resource benefit of the multi-rail

qudit encoding is demonstrated.
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Chapter 2

Review of Quantum Optics

In this chapter the basic physical concepts of quantum optics are reviewed which are

fundamental to photonic quantum information processing. Sometimes the term quan-

tum optics is used, when the electromagnetic field itself is not quantized, but treated as

an external classical field which perturbs some other quantum system. This approxima-

tion is often enough to explain the observed phenomena, however, to explain photon

number states and other highly non-classical effects needed for quantum information

protocols, one needs to quantize the radiation field.

2.1 Quantization of the Electromagnetic Field

Maxwell’s equations in vacuum in the absence of sources are

∇ · E= 0, ∇ ·B= 0, (2.1)

∇× E= −∂tB, ∇×B=
1
c2
∂tE, (2.2)

which can be rewritten in terms of the vector and scalar potentials A and φ,

−△φ − ∂t∇ ·A= 0 (2.3)

∇(∇ ·A)−△A=
1
c2

�

∂t∇φ − ∂ 2
t A
�

, (2.4)

by using the identities

E= −∇φ − ∂tA, B=∇×A. (2.5)

The equations above do not completely define the potentials, there is an extra gauge

freedom present. Choosing the Coulomb gauge ∇ · A = 0, simplifies the equations
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considerably:

△φ = 0, −△A=
1
c2

�

∂t∇φ − ∂ 2
t A
�

. (2.6)

Additionally, in the Coulomb gauge one can set φ equal to zero everywhere, then the

equations of motion are simply

�

1
c2
∂ 2

t −△
�

A= 0. (2.7)

Equation (2.7) can be solved with many different boundary conditions. The bound-

ary conditions are usually dictated by the exact physical system, but in many cases the

region of interest is far away from the boundary, thus, the choice of boundary conditions

does not affect the results of the calculations. For this reason, the rest of the calculations

are done in a periodic box with side lengths L and volume V = L3.

Given periodic boundary conditions, the general real solution of Eq. (2.7) is

Ã (x, t) =
1
p

V

∑

k

3
∑

λ=1

ελ(k)Aλ(k)e
i(k·x−ωk t) + ε∗

λ
(k)A∗

λ
(k)e−i(k·x−ωk t), (2.8)

where k ∈
�

2π
L n | n ∈ Z3

	

, Aλ(k) are complex amplitudes,ωk = c|k|, ελ(k) for λ ∈ {1,2}
are the transversal polarizations and ε3(k) is the longitudinal polarization vector. How-

ever, the vector potential must also satisfy the gauge condition ∇ · A = 0. The gauge

condition implies that ελ(k) · k = 0, i.e., only transversal polarizations are allowed.

Thus, the vector potential takes the following form:

A (x, t) =
1
p

V

∑

k

∑

λ=1,2

ελ(k)Aλ(k)e
i(k·x−ωk t) + ε∗

λ
(k)A∗

λ
(k)e−i(k·x−ωk t), (2.9)

where ελ(k) are polarization vectors perpendicular to the wave vector k and they are

orthogonal to each other ε∗
λ
(k) · ελ′(k) = δλλ′ .

The Lagrangian density of the electromagnetic field in the Coulomb gauge is

L =
1
2
ε0 |E|

2 −
1

2µ0
|B|2 =

1
2
ε0|∂tA|2 −

1
2µ0
|∇×A|2 =

1
2
ε0|∂tA|2 −

1
2µ0
△|A|2 , (2.10)

where we used the identity |∇×A|2 =△|A|2−(∇ ·A)2 =△|A|2 when∇·A= 0 to derive
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the last equality. Therefore, the canonical momentum is

Π(x, t) = ε0∂tA(x, t) =
−iε0p

V

∑

k

∑

λ=1,2

ωk

�

ελ(k)Aλ(k)e
i(k·x−ωk t) − ε∗

λ
(k)A∗

λ
(k)e−i(k·x−ωk t)

�

(2.11)

where ε0 and µ0 are the vacuum permittivity and permeability.

To quantize the classical theory, one can evaluate the Poisson brackets

�

Aλ(k), Aλ′(k
′)
	

,
�

Aλ(k), A∗
λ′
(k′)

	

,
�

A∗
λ
(k), A∗

λ′
(k′)

	

,

and promote the complex amplitudes Aλ(k) to operators via the quantization rule

{U , V} → 1
iħh

�

Û , V̂
�

, where the Poisson bracket of U and V is defined as

{U , V}=
∫

V

d3 x
3
∑

i=1

�

δU
δÃi

δV
δΠ̃i

−
δV
δΠ̃i

δU

δÃi

�

. (2.12)

The complex amplitudes Aλ(k) can be expressed either using the fields A and Π or

using the unconstrained fields Ã and Π̃ the following way:

Aλ(k) =
1

2
p

V

∫

V

ε∗
λ
(k) ·

�

Ã(x, t) +
i

ωkε0
Π̃(x, t)

�

e−i(k·x−ωk t)d3 x . (2.13)

In the equation above the constrained and unconstrained fields are interchangeable.

From Eq. (2.13) the Poisson brackets of the complex amplitudes are:

�

Aλ(k), Aλ′(k
′)
	

= 0,
�

Aλ(k), A∗
λ′
(k′)

	

=
−i

2ωkε0
δk,k′δλ,λ′ ,

�

A∗
λ
(k), A∗

λ′
(k′)

	

= 0.

(2.14)

It should be noted that when deriving the Poisson brackets displayed in Eq. (2.14)

using Eq. (2.12) the functional derivatives are taken with respect to the unconstrained

fields Ã and Π̃ which do not obey the Coulomb gauge condition, as opposed to A and Π,

for which ∇·A=∇·Π= 0 holds. This yields surprising results for the Poisson brackets

of A(x, t) and Π(y, t)

�

Ai(x, t),Π j(y, t)
	

= δi jδ
(3)(x− y)− ∂i∂ jG(x− y), (2.15)

where G(x) is the green function of the Laplace operator. The quantization of con-

strained systems is described in more detail in Ref. [48].

With the Poisson brackets evaluated, we can replace the complex amplitudes Aλ(k)
with ladder operators in the Heisenberg picture via the mapping Aλ(k)→

Ç

ħh
2ωkε0

âλ(k),

12
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and define their bosonic commutation relations based on Eq. (2.14)

�

âλ(k), âλ′(k
′)
�

= 0,
�

âλ(k), â†
λ′
(k′)

�

= δk,k′δλ,λ′ ,
�

â†
λ
(k), â†

λ′
(k′)

�

= 0. (2.16)

And finally, the field and momentum operators take the form

Â=
∑

k

∑

λ=1,2

√

√ ħh
2ωkε0V

�

ελ(k)âλ(k)e
i(k·x−ωk t) + ε∗

λ
(k)â†

λ
(k)e−i(k·x−ωk t)

�

, (2.17)

Π̂= −i
∑

k

∑

λ=1,2

√

√ħhωkε0

2V

�

ελ(k)âλ(k)e
i(k·x−ωk t) − ε∗

λ
(k)â†

λ
(k)e−i(k·x−ωk t)

�

. (2.18)

In this section the small hat notation was used to differentiate quantum mechanical

operators from classical quantities. In the following sections the hat of the operators is

omitted to simplify the notation.

2.2 Photon Number States

First let us write down the Hamiltonian of the quantized electromagnetic field. The

Hamiltonian is defined in terms of the Lagrangian density given in Eq. (2.10) the fol-

lowing way:

H =

∫

V

d3 x (Π · ∂tA−L ) =
∫

V

d3 x

�

|Π|2

2ε0
+
△|A|2

2µ0

�

=
∑

k

∑

λ=1,2

ħhωk

�

a†
λ
(k)aλ(k) +

1
2

�

.

(2.19)

The above equation for the Hamiltonian shows that the electromagnetic field in the

Coulomb gauge is made up of many harmonic oscillators, more precisely, there is a

harmonic oscillator associated with every degree of freedom labeled by k and λ.

At this point, the operators obtained through the quantization procedure are only

algebraic objects; their algebra is defined by the canonical commutation relations (CCR)

given by Eq. (2.16). In order to make more elaborate calculations we should find their

representation on some compatible Hilbert space. The CCRs imply that the operators

a†
λ
(k)aλ(k) are semi-positive definite and have non-negative integer eigenvalues, there-

fore, they are called number operators. The lowest eigenvalue state is the vacuum with

zero eigenvalue, in other words, the vacuum of the harmonic oscillator labeled by k

and λ is destroyed by the operator aλ(k), and the excited states are created from the

vacuum by repeatedly applying a†
λ
(k). For this reason, aλ(k) and a†

λ
(k) are called the

annihilation and creation operators.

One can construct the complete vacuum state of the electromagnetic field by taking
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the tensor product of the ground states of all harmonic oscillators with the condition

that the vacuum is normalized to one, i.e., 〈0|0〉= 1. The vacuum constructed this way

is destroyed by all the annihilation operators

aλ(k) |0〉= 0, ∀k, λ= 1, 2. (2.20)

The interpretation of the states a†
λ
(k) |0〉= |k,λ〉 is that they represent single-photon

states, i.e., the operator a†
λ
(k) excites the vacuum and creates a photon with wave vector

k and polarization λ. If we label the degrees of freedom using the positive integers, we

can write down a general multi-photon state as

∏

i=1,2,...

a†
i

ni

p

ni!
|0〉= |n1, n2, . . .〉 , ni = 0,1, 2, . . . , (2.21)

where each index i corresponds to a unique tuple of k and λ. We interpret the states

|n1, n2, . . .〉 as that ni is the number of photons present in the i-th optical mode with wave

vector ki and polarization λi. These multi-photon states are simultaneous eigenvectors

of all number operators a†
i ai with corresponding eigenvalues ni and of the Hamiltonian

given in Eq. (2.19).

When calculating the vacuum energy from Eq. (2.19) one finds that it is not finite

because every oscillator contributes a ħhωk/2 to the vacuum energy. However, the ab-

solute energy of the vacuum is physically irrelevant, and only the energy differences

between the vacuum state and excited states are physically important. Therefore, the

vacuum energy can be subtracted from the Hamiltonian, and after the subtraction, all

the occupation number states |n1, n2, . . .〉 have a finite well-defined eigenvalue equal to

ħh
∑

iωki
ni.

The vector space spanned by the occupation number states equipped with the inner

product (implied by the CCRs)

〈n1, n2, . . . |m1, m2, . . .〉=
∏

i=1,2,...

δni ,mi
(2.22)

forms a Fock space, a Hilbert space which contains all the possible states of the elec-

tromagnetic field, including states with different photon numbers. On the occupation

number states of the Fock space the annihilation and creation operators act as follows:

ai |n1, n2, . . . , ni, . . .〉=
p

ni |n1, n2, . . . , ni − 1, . . .〉 , (2.23)

a†
i |n1, n2, . . . , ni, . . .〉=

p

ni + 1 |n1, n2, . . . , ni + 1, . . .〉 . (2.24)
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The photon number states introduced in this section are observable states of the

electromagnetic field, however, their behavior is extremely non-classical. For example,

a strange property of photon number states is that the photons that make up the state

are indistinguishable; one can tell how many photons there are in a specific optical

mode but cannot say which photon is in which mode. In the next section we will see

other examples related to the interference of photon number states which also show

their non-classical nature.

2.3 Coherent states

The classical wave description of light is one of the most successful theories in physics,

however, it cannot explain some physical phenomena, e.g., the photoelectric effect.

Today we know that the correct theory of light is quantum mechanical, and so far, we

looked at the fundamentals of the quantum theory of light. But how does the quantum

theory of light explain classical waves and interference?

The answer lies in coherent states. Although there are no states of the electromag-

netic field which would behave exactly like a classical wave because of the uncertainty

principle, there are states which experience a minimal amount of quantum fluctuations.

These states are called coherent states. The coherent states in an optical mode with an-

nihilation and creation operators a and a† take the form

|α〉= e−
|α|2

2

∞
∑

n=0

αn

p
n!
|n〉= e−

|α|2
2

�∞
∑

n=0

αna†n

n!

�

|0〉= D(α) |0〉 , (2.25)

where α is an arbitrary complex number and D(α) = eαa†−α∗a is called a displacement

operator. Displacement operators are the unitary representation of the transformation

group a→ a+ β and satisfy the identity D(β) |α〉= |α+ β〉 as their name suggests.

If we introduce the Hermitian quadrature operators of the optical mode

x =
a+ a†

2
, p =

a− a†

2i
, (2.26)

we get the uncertainty relation∆x∆p ≥ 1
4 , where the equality holds for coherent states.

Coherent states are also eigenvectors of the annihilation operator

a |α〉= α |α〉 , (2.27)
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thus, the expectation values of the quadrature with coherent states evaluate to

〈α|x |α〉= Re(α), 〈α|p|α〉= Im(α). (2.28)

To see the analogy between classical waves and coherent states, let us consider a

monochromatic coherent state |k,λ,α〉 with wave vector k and polarization λ. The

state can be written as

|k,λ,α〉= e−
|α|2

2

∞
∑

n=0

αna†
λ
(k)

n

n!
|0〉 (2.29)

and the electric field operator has the form

E(x, t) =
∑

k

∑

λ=1,2

√

√ ħhωk

2ε0V
ελ(k)aλ(k)e

i(k·x−ωk t) + h.c.= E(+)(x, t) + E(−)(x, t), (2.30)

where E(+) ∼ e−iωt and E(−) ∼ eiωt are the positive and negative frequency parts of the

electric field operator. The expectation values of the positive and negative frequency

parts are

〈k,λ,α|E(+)|k,λ,α〉=
√

√ ħhωk

2ε0V
ελ(k)αei(k·x−ωk t), (2.31)

〈k,λ,α|E(−)|k,λ,α〉=
√

√ ħhωk

2ε0V
ε∗
λ
(k)α∗e−i(k·x−ωk t). (2.32)

Equations (2.31) and (2.32) show that the expectation values of the positive and

negative frequency parts evolve exactly like classical plane waves with amplitudes pro-

portional to |α| and with relative phase φ = arg(α), where α = |α|eiφ. This indicates

that monochromatic coherent states correspond to classical plane waves. Although they

evolve classically, quantum mechanics predicts that even coherent states exhibit quan-

tum fluctuations, this can be experimentally observed in the form of shot noise when

the intensity of a coherent source is measured. This is because the average photon num-

ber n̄ and its variance are both proportional to |α|2. Therefore, the fluctuations in the

intensity of coherent light are proportional to 1/
p

n̄.

2.4 Linear optics

Now that we have established the correspondence between classical waves and coher-

ent states, we can try to describe classical wave interference using quantum mechanics.

To do so, let us consider the case of the lossless beamsplitter. The lossless beamsplitter

can be classically described as a thin, linear dielectric media, which reflects some por-
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tion of the incoming light waves and transmits the rest (see Fig. 2.1 for illustration).

One can solve this problem for incoming plane waves using Maxwell’s equations. The

solution is that the outgoing waves are also plane waves and their complex amplitudes,

αout and βout, can be written as the linear combination of the incoming waves complex

amplitudes, αin and βin,
�

αout

βout

�

= S

�

αin

βin

�

, (2.33)

where S is a 2× 2 unitary indicating that the beamsplitter is lossless.

Figure 2.1: Plane waves interacting with a beamsplitter. αin/out and βin/out are
complex amplitudes representing the amplitudes and relative phases of the
incoming and outgoing plane waves.

In the quantum picture the lossless beamsplitter must be represented as a unitary

transformation U(S) on the Fock space. And if we consider coherent states by the cor-

respondence principal we can write

|k3,λ,αout〉 ⊗ |k4,λ,βout〉= U(S) |k1,λ,αin〉 ⊗ |k2,λ,βin〉 , (2.34)

assuming the beamsplitter does not mix polarizations. To simplify the notation let us

relabel the relevant creation and annihilation operators ain = aλ(k1), bin = aλ(k2),
aout = aλk3 and bout = aλ(k4). On the one hand we have

|k3,λ,αout〉 ⊗ |k4,λ,βout〉= exp(αouta
†
out −α

∗
outaout)exp(βout b

†
out − β

∗
out bout) |0〉 , (2.35)
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and on the other hand

|k3,λ,αout〉 ⊗ |k4,λ,βout〉=exp
�

αinU(S)a†
inU†(S)−α∗inU†(S)ainU(S)

�

×exp
�

βinU(S)b†
inU†(S)− β∗inU†(S)binU(S)

�

|0〉 , (2.36)

this implies that

�

a†
out, b†

out

�

�

αout

βout

�

=
�

a†
out, b†

out

�

S

�

αin

βin

�

=
�

U(S)a†
inU†(S), U(S)b†

inU†(S)
�

�

αin

βin

�

,

(2.37)

which further implies the following

S†

�

aout

bout

�

=

�

U(S)ainU†(S)
U(S)binU†(S)

�

. (2.38)

Equation (2.38) gives us a transformation rule to handle the lossless beamsplitter

quantum mechanically. The rule is simply to replace the operators ain, bin the following

way
�

ain

bin

�

→ S†

�

aout

bout

�

. (2.39)

This rule not only applies for coherent states, but for all states, including photon number

states. An interesting effect related to the interference of photon number states is the

Hong-Ou-Mandel (HOM) effect [49], which is observed when a photon is injected into

both input modes of a symmetric beamsplitter. To state formally

|1a, 1b〉in = a†
in b†

in |0〉
50:50
−−→

�

a†
out + b†

out

�

p
2

�

a†
out − b†

out

�

p
2

|0〉=

�

a†
out

�2

2
|0〉 −

�

b†
out

�2

2
|0〉

=
1
p

2

�

|2a, 0b〉out − |0a, 2b〉out

�

,

(2.40)

if the S matrix of a symmetric beamsplitter has the form 1p
2

�

1 1

1 −1

�

.

The result above for the output state cannot be interpreted classically. Despite the

fact that a single photon entering the symmetric beamsplitter would be found with equal

probability in both output modes, when two indistinguishable photon enters, they are

always exiting together and never apart. The HOM effect is a good example for the

non-classical behavior of photon number states.

The lossless beamsplitter is a linear-optical element. The term linear refers to the

fact that the light interacts with a linear media, which means that the relation between
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the incoming and outgoing plane waves is linear and in the quantum case the creation

and annihilation operators transform linearly. In general, for a linear-optical network

with N different optical modes one can write

S†











a1

a2
...

aN











=











U(S)a1U†(S)
U(S)a2U†(S)

...

U(S)aN U†(S)











, (2.41)

where S is an N × N unitary. Equation (2.41) is the generalization of Eq. (2.38)

and gives the connection between the unitary S and its Fock space representation

U(S). One may use the representation theory of Lie algebras to find the representation

U(S) = exp
�

i
∑

k,l Hkl a
†
kal

�

, where H is an N × N Hermitian matrix which generates S,

i.e., S = exp(iH).

An important problem related to linear-optical interferometers is to calculate the

matrix elements of U(S) from the matrix elements of S. Matrix elements such as

〈m1, m2, . . . , mN |U(S)|n1, n2, . . . , nN 〉 give the probability amplitude for finding a pho-

ton number sequence m1, m2, . . . , mN when measuring the photon count in the output

modes given an input photon number sequence n1, n2, . . . , nN , thus, the probability may

be written as

P(m1, m2, . . . , mN |n1, n2, . . . , nN ) = |〈m1, m2, . . . , mN |U(S)|n1, n2, . . . , nN 〉|
2 . (2.42)

To calculate the probability, one can expand the state U(S) |n1, n2, . . . , nN 〉 the following

way

U(S) |n1, n2, . . . , nN 〉=
N
∏

j=1

1
p

n j!

�

N
∑

i=1

a†
i Si j

�n j

|0〉 . (2.43)

One can further expand Eq. (2.43) and write U(S) |n1, n2, . . . , nN 〉 as a linear com-

bination of photon number states

U(S) |n1, n2, . . . , nN 〉=
∑

{m1,m2,...,mN }
∑

i mi=
∑

i ni

perm (S [1m1 , 2m2 , . . . , , N mN |1n1 , 2n2 , . . . , N nN ])
Æ
∏

i ni!mi!
|m1, m2, . . . , mN 〉 , (2.44)

where S [1m1 , 2m2 , . . . , , N mN |1n1 , 2n2 , . . . , N nN ] is an inflated (or deflated) matrix created

from S by repeating each of its i-th row mi times than repeating the each of its j-th

column n j times, and perm(M) denotes the permanent of the matrix M . The inflated
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matrix can be written in the form of a block matrix the following way

S [1m1 , 2m2 , . . . , , N mN |1n1 , 2n2 , . . . , N nN ] =











[S11]m1×n1
[S12]m1×n2

. . . [S1N]m1×nN

[S21]m2×n1
[S22]m2×n2

. . . [S2N]m2×nN
...

...
. . .

...

[SN1]mN×n1
[SN2]mN×n2

. . . [SNN]mN×nN











,

(2.45)

where
�

Si j

�

mi×n j
is a mi × n j block filled with the matrix element Si j. Finally, we can

write down an expression for the matrix elements

〈m1, m2, . . . , mN |U(S)|n1, n2, . . . , nN 〉=
perm (S [1m1 , 2m2 , . . . , , N mN |1n1 , 2n2 , . . . , N nN ])

Æ
∏

i ni!mi!
. (2.46)

For the derivation of Eq. (2.44) see Ref. [50].
The definition of the permanent is similar to the definition of the determinant but

the ± signs of the permutations are left out

perm(M) =
∑

σ∈Sn

n
∏

i=1

Mi,σ(i), (2.47)

where Sn denotes the permutations of the set {1, 2, . . . , n}. Despite the similarity, calcu-

lating the permanent is computationally difficult [51]; the fastest algorithm for calcu-

lating the permanent of an n×n matrix has a time complexity O(n2n) [52]. This means

that calculating the probabilities P(m1, m2, . . . , mN |n1, n2, . . . , nN ) or sampling their dis-

tribution is also computationally demanding.

Generating samples from the distribution P(m1, m2, . . . , mN |n1, n2, . . . , nN) is called

the boson sampling problem and classical computers cannot do it efficiently. Even sam-

pling an approximation of this distribution is difficult using classical computers [53].
However, one might construct a linear-optical network which approximates the under-

lying transformation S and use actual photons and detectors to sample an approximation

of P(m1, m2, . . . , mN |n1, n2, . . . , nN ). Such a boson sampling device would be fundamen-

tally more powerful than any classical computer.

Indeed, boson sampling devices have been built and evidence for their supremacy

was demonstrated (see Refs. [5–7]). However, boson sampling devices are not uni-

versal as other types of quantum computers, so their application is severely limited.

Nevertheless, boson sampling displays the strength of linear optics.
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Chapter 3

Universal Photonic Quantum

Computing

Single-photon states allow the definition of qubits and qudits, and linear optics, e.g.,

a network of beamsplitters and phase shifters, offer great control over single-photon

states. However, a network of linear-optical elements cannot create entanglement be-

tween qubits or qudits encoded by single-photons. For this reason, it was unclear for a

long time whether linear optics can be used to implement universal quantum compu-

tation. In the early 2000’s Knill, Laflamme and Milburn showed that linear optics and

photon number resolving detectors (PNRD) together can be used to implement univer-

sal quantum computation [23]. This chapter reviews the standard model of quantum

computation, the quantum circuit model, and describes two ways to efficiently simulate

the quantum circuit model using linear optics and PNRDs.

3.1 Quantum Circuit Model

The quantum circuit model provides a mathematical framework to define precisely what

we mean by quantum computation and quantum algorithms, similarly to how the Turing

machine defines computability and notion of a classical algorithm. The quantum circuit

model is arbitrary in many ways, and it is possible to define other, seemingly different

models for quantum computation. However, all other models for quantum computation

currently known are either equivalent to, or weaker than the quantum circuit model.

In this context, the equivalence of two models means that they can simulate each other

with a polynomial resource overhead.

The qubit is a two-level quantum system, and it is the basic constituent of the quan-

tum computer in the quantum circuit model. The Hilbert space of a single qubit is iso-

morphic toC2, thus, we may represent the state of qubit with a two-component complex
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vector

|ψ〉= α |0〉+ β |1〉=

�

α

β

�

∈ C2, (3.1)

where {|0〉 , |1〉} is an orthogonal basis of the qubit’s Hilbert space. A finite collection of

qubits forms a quantum register and the combined Hilbert space of the qubits contains

all the possible states of the register.

In the quantum circuit model, the quantum computer is a machine with a quantum

register which can perform a set of reversible, unitary transformations on its quantum

register along with qubit specific measurements and a special reset operation. The reset

operation resets the state of the quantum register into a simple state which can serve as

a well-defined starting point for quantum computation, e.g., the state |0〉⊗N .

The most basic form of quantum information processing usually involves the follow-

ing three steps:

1. Encoding classical or quantum information into a quantum state.

2. Controlled evolution of the quantum state.

3. Measuring the quantum state to retrieve some classical information.

In this context, classical information means a sequence of zeros and ones, and quantum

information refers to the information needed to describe a quantum state.

One may use the quantum computer described above to achieve these three steps.

After resetting the quantum register into the starting state the user of the quantum

computer may instruct it to perform a sequence of quantum gates U1, U2, . . . , Un to carry

out steps one and two, and arrive at a final state

|ψ〉final = UnUn−1Un−2 . . . U1 |0〉
⊗N . (3.2)

The above gate sequence can be thought of as an algorithm for preparing the state

|ψ〉final.

A quantum algorithm in the quantum circuit model is defined as a sequence of quan-

tum gates, and the output of the computation is either taken to be the final quantum

state |ψ〉final, or the result of a measurement made in the state |ψ〉final.

A sequence of quantum gates can be depicted using simple drawings

. . .

. . .

. . .

|0〉
U1

U3

U5

Un

|ψ〉final|0〉
U2

U4

|0〉

(3.3)
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where each qubit is represented by a horizontal wire and gates are drawn as boxes placed

on top of the appropriate wires indicating which qubits they affect. These drawings

resemble logical circuits, but instead of logic gates (AND, OR, XOR etc.), the boxes here

indicate quantum gates. Hence the name quantum circuit model.

Using the concept of the quantum computer defined by the quantum circuit model,

it is now possible to define universality. A gate set B is universal, if any unitary can be

approximated using a finite sequence of quantum gates from the set B, such that the

error of the approximation can be made vanishingly small.

Quantum computers which implement a universal gate set are extremely powerful,

but one might fear that such a gate set would be too large to physically realize with

hardware. Fortunately, this is not the case; a universal gate set can be as small as to

only contain a few single-qubit and one two-qubit gate.

Notable single-qubit gates which frequently appear in the description of quantum

algorithms are the Pauli X , Y , Z gates

X =

�

0 1

1 0

�

, Y =

�

0 −i

i 0

�

, Z =

�

1 0

0 −1

�

, (3.4)

and the phase and Hadamard gates

P(φ) =

�

1 0

0 eiφ

�

, H =
1
p

2

�

1 1

1 −1

�

. (3.5)

Using the gates defined above it is possible synthesize any other single-qubit gate,

however, they cannot create entanglement between qubits. It turns out that it is enough

to introduce a single two-qubit gate the controlled-X gate

CX = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ X (3.6)

to create a universal gate set. For example, the gate sets

{CX , all single-qubit gates} ,
n

CX , H, P
�π

4

�o

(3.7)

are both universal [54,55].

A universal quantum computer can simulate a classical computer and a classical

computer can simulate a quantum computer with exponential resource overhead, thus,

the notion of computability is the same in both the quantum and classical case [56,57];
quantum computers offer only a potential speed up over classical computation.
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3.2 The KLM Scheme

The core idea of the KLM scheme [23] is to encode qubits using single-photon states and

use linear optics and PNRDs to implement a universal gate set. A single qubit is encoded

by two optical modes, labeled l1 and l2, as follows: ||0〉〉 = |1, 0〉l1,l2 and ||1〉〉 = |0, 1〉l1,l2 ,

where the double-ket symbol ||〉〉 is used to denote the logical states of the qubit and

the single-kets |〉 denote photon number states. This encoding is called the dual-rail

encoding.

The dual-rail encoding is a great choice for encoding qubits in a linear-optical

scheme, because linear-optical transformations of the qubit’s modes can reproduce

all single-qubit gates. Let us denote the creation operators of the two modes as a†
0 and

a†
1, then the state of the qubit α ||0〉〉 + β ||1〉〉 is encoded by the photon number state

(αa†
0 + βa†

1) |0〉, thus, applying the optical transformation S ∈ U(2)

�

a†
0, a†

1

�

→
�

a†
0, a†

1

�

S (3.8)

yields the state

�

a†
0, a†

1

�

S

�

α

β

�

|0〉= α′ ||0〉〉+ β ′ ||1〉〉 , where

�

α′

β ′

�

= S

�

α

β

�

. (3.9)

In other words, the linear-optical transformation S acts on the qubit’s Hilbert space as

a single-qubit gate.

It is possible to create any transformation S ∈ U(2) using only beamsplitters and

phase shifters, e.g., a general beamsplitter parameterized by two angles θ and ϕ

BS(θ ,ϕ) =

�

cosθ −eiϕ sinθ

e−iϕ sinθ cosθ

�

(3.10)

and two phase shifters can realize any 2× 2 unitary linear-optical transformation, and

therefore any single-qubit gate on the qubit’s Hilbert space.

Universal quantum computation requires a universal gate set, which must include

an entangling gate (e.g., CX ). Unfortunately, it is not possible to use linear optics to

create entangled dual-rail qubits. One may use elementary matrix algebra to prove this.

For the proof see Appendix A.

The lack of entanglement can be related to the absence of nonlinearity, in other

words, the absence of interaction between photons. To make photons interact we may

use a nonlinear crystal, e.g., a Kerr crystal, but in practice the nonlinearities of such

crystals are too small to entangle single-photon states. We may avoid nonlinear crystals
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by using ancilla photons and measurements instead to create nonlinear effects, however,

this comes at the cost of determinism.

The nonlinear phase shift operation is defined on a single optical mode as follows

NSφ : α0 |0〉+α1 |1〉+α2 |2〉 → α0 |0〉+α1 |1〉+ eiφα2 |2〉 . (3.11)

The application of the NSφ operation on a state which is a linear combination of zero,

one and two-photons states results in the two-photon state acquiring an extra eiφ phase.

It is possible to use beamsplitters, phase shifters and PNRDs to realize it. The configura-

tion of ancilla modes and detectors is depicted by Fig. 3.1. However, the NSφ operation

only succeeds if the ancilla measurement yields one photon in the first ancilla and zero

photons in the second ancilla as indicated on Fig. 3.1. The linear-optical implementa-

tion of NSφ is thus nondeterministic.

Figure 3.1: Nonlinear phase shift implemented using linear optics and photon
number resolving detectors.

One can use the nonlinear phase shift to implement the controlled Z gate on dual

rail qubits. On the logical qubits the C Z gate acts as follows

C Z ||k〉〉 ||l〉〉= (−1)kl ||k〉〉 ||l〉〉 . (3.12)

It is easy to check, that the combination of beamsplitters and nonlinear phase shifts

depicted on Fig. 3.2 acts as a C Z gate on two dual-rail qubits. If the nonlinear phase

shifts are implemented using linear optics, then the C Z gate is non-deterministic with

a success probability of 1/16, since both NSπ have to succeed at once and each of them

has a success probability of 1/4. For the calculation of these probabilities see Appendix

B.

To use this non-deterministic C Z gate one may apply postselection. Postselection

is to discard measurements based on the results of the ancilla measurements, and only

build statistics from measurements to which prior the gate had succeeded. After posts-
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election the measurement results yield the same statistic as if they were made after the

application of a deterministic C Z gate.

The gate set B = {C Z , all single-qubit gates} is also a universal gate set, since the

CX and C Z gates are connected by a single-qubit similarity transformation

(1⊗H)C Z(1⊗H†) = CX . (3.13)

Therefore, via postselection one could in theory simulate any quantum gate using lin-

ear optics and PNRDs. However, postselection by itself is highly inefficient, because a

measurement is only kept if all the ancilla measurements turned out correct. In the case

of a quantum circuit containing O(n) number of C Z gates, the C Z gates would need to

succeed independently to keep a measurement when postselecting, thus, the probabil-

ity of retaining a measurement would be 1/16O(n). For this reason, many polynomial

time quantum circuits would require an exponential overhead to be simulated by linear

optics and postselection.

Figure 3.2: Controlled phase gate on dual-rail qubits implemented using sym-
metric beamsplitters BS(±π/4,0) and nonlinear phase shifts. For φ = π, this
is the controlled Pauli Z gate.

The problem with the non-deterministic C Z gate is that when it fails it spoils the

whole computation, because the dual-rail qubits are destroyed. However, one can utilize

quantum teleportation to significantly lessen this destructive effect.

Quantum teleportation can be used to move the quantum information of a source

mode to another destination mode without the source and destination modes ever di-

rectly interfering. Let us label the source mode with 1 and introduce two ancilla modes

labeled by 2 and 3. If we prepare the state

|φ〉2,3 =
1
p

2
(|1,0〉2,3 + |0,1〉2,3) (3.14)
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on the two ancilla modes, then a set of measurements can be used to teleport the state

of the source mode |ψ〉1 = α |0〉1 + β |1〉1 to mode 3. As per usual for quantum tele-

portation protocols, these measurements should be made on the Bell basis |0, 0〉± |1, 1〉
and |0, 1〉 ± |1, 0〉.

We may do a partial Bell measurement using linear optics by implementing the trans-

formation F ∈ U(2)

�

a†
1, a†

2

�

→
�

a†
1, a†

2

� 1
p

2

�

1 1

1 −1

�

=
�

a†
1, a†

2

�

F. (3.15)

Applying F to the state |ψ〉1 ⊗ |φ〉2,3 gives us

U(F) |ψ〉1 ⊗ |φ〉2,3 =
1
2
|1, 0〉1,2 ⊗ (α |0〉3 + β |1〉3) +

1
2
|0,1〉1,2 ⊗ (α |0〉3 − β |1〉3)

+
1
2

�

1
p

2
|0,0〉1,2 +

1
2
|2, 0〉1,2 −

1
2
|0,2〉1,2

�

⊗ (α |1〉3 + β |0〉3)

+
1
2

�

1
p

2
|0,0〉1,2 −

1
2
|2, 0〉1,2 +

1
2
|0,2〉1,2

�

⊗ (α |1〉3 − β |0〉3),

(3.16)

thus, if now we measure modes 1 and 2 and the outcome of the measurement is |1,0〉1,2,

then the state |ψ〉 successfully teleported from mode 1 to mode 3. If the measurement

outcome is |0,1〉1,2, then applying the phase shift a†
3 → −a†

3 recovers the state |ψ〉 on

mode 3. In case of the other outcomes, the state |ψ〉 cannot be recovered, therefore,

this teleportation protocol fails with probability 1/2.

Using the teleportation protocol described above it is possible to implement the C Z

gate with probability 1/4. Given two dual-rail qubits, where the first qubit is defined by

modes 1, 2 and the second qubit is defined by modes 3, 4, and ancilla modes labeled 5,

6, 7, 8 in the state

|cs〉5,6,7,8 =
1
2
|1, 0,1, 0〉5,6,7,8 +

1
2
|1,0, 0,1〉5,6,7,8 +

1
2
|0, 1,1, 0〉5,6,7,8 −

1
2
|0,1, 0,1〉5,6,7,8 .

(3.17)

Teleporting mode 2 onto mode 6 and mode 4 onto mode 8 realizes the C Z gate if both

teleportation succeeds. This is done by making one Bell measurement on modes 2 and

5, and another Bell measurement on modes 4 and 7 along with the phase corrections

on modes 6 and 8 as prescribed by the teleportation protocol. Since the teleportation

protocol succeeds with probability 1/2 the C Z gate implemented this way has a success

rate of 1/4. The preparation of the state |cs〉 and the linear-optical network for the

teleportation of modes is shown by Fig. 3.3.

Using quantum teleportation to implement the C Z gate has the advantage that fail-
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ing to prepare the ancillas is non-destructive. The preparation can be tried repeatedly,

until the state preparation succeeds. Furthermore, the teleportation protocol can be

improved by generalizing the Bell measurement protocol to succeed with probability

n/(n+ 1) by using 2n number of ancilla modes. This way the teleportation based C Z

gate has a success rate n2/(n+1)2, thus, it can be made near-deterministic by increasing

n.

The KLM scheme can efficiently simulate the quantum circuit model using linear op-

tics and PNRDs, but in practice it also requires quantum memories to store ancilla states,

and optical switching to perform the teleportation protocol. Also, everything must be

done with perfect timing, making the KLM scheme unrealistic to implement with phys-

ical hardware. Despite the difficulties of the KLM scheme, Knill et al. showed that in

theory it is possible to use linear optics for universal quantum computation which was at

the time believed by many to be not the case. This discovery paved the way for other im-

proved schemes for linear-optical quantum computation (LOQC), most famously cluster

state computation, which we will discuss in the next section.

Figure 3.3: Non-deterministic C Z gate with success rate 1/4 (φ = π case). The
linear-optical network inside the dashed line repeatedly attempts to prepare
the state |cs〉5,6,7,8 using nonlinear phase shifts until it succeeds. Once |cs〉5,6,7,8

is prepared successfully, the teleportation protocol performs the C Z gate on
qubits Q1 and Q2. The measurement outcomes of the Bell measurements are
indicated by the photon numbers n1, n2, n3 and n4.
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3.3 Cluster State Quantum Computation

Cluster state quantum computation is a form of measurement-based quantum compu-

tation (MBQC), where the idea is to use a highly entangled resource states to simulate

a universal quantum gate set by making only local measurements. MBQC is particularly

fitting for quantum computer architectures in which non-local operations on qubits are

non-deterministic or unreliable, for example, in the case of photonic quantum comput-

ers.

In the KLM scheme to implement a near-deterministic gate, entangled ancilla re-

sources need to be prepared on demand with incredible timing constraints. While in

MBQC it is enough to prepare a single resource state ahead of computation, and after

the preparation of the resource state linear optics can simulate a universal gate set de-

terministically by performing local operations. For this reason, MBQC is believed to be

one of the best computational models for LOQC.

Cluster state quantum computation uses resources states called cluster states some-

times referred to as graph states. Each mathematical graph G, a set of vertices V and

edges E, defines a cluster state

|G〉=

 

∏

{i, j}∈E

C Zi j

!

|+〉⊗|V | , (3.18)

where each qubit corresponds to a vertex of G. The single-qubit state |+〉 is defined as

|+〉 = 1p
2
(|0〉 + |1〉) and C Zi j = |0〉〈0|i ⊗ 1 j + |1〉〈1|i ⊗ Z j is the unitary action of the

controlled Z gate performed on qubits i and j.

Similarly to how the quantum circuit model defines a model of quantum computa-

tion, MBQC defines an alternative model of quantum computation, sometimes called the

one-way quantum computer. The one-way computer can make the following actions:

1. Prepare a cluster state |G〉.

2. Qubit-specific adaptive measurements in the X–Y plane of the Bloch sphere. See

Appendix C for the definition of the Bloch sphere.

Above, the adaptivity of measurements means that the basis of each measurement can

be determined on the fly based on the results of the previous measurements.

A measurement in the X–Y plane is equivalent to a unitary transformation parame-

terized by an angle and a measurement on the computational basis of the qubit

M(φ) = P(φ) H , (3.19)
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where M(φ) denotes a general measurement in the X–Y plane. This equivalence can

be used to translate the measurements of the one-way computer into a quantum circuit.

The one-way computer can only make measurements on the cluster state |G〉, there-

fore, in this computation model it is natural to define an algorithm as measurement

pattern on |G〉:
Mi1(φ1), Mi2(φ2), . . . , Mim(φm), (3.20)

where the measurements are performed in the order indicated by the numbers 1, 2, . . . , m

and Mik(φk) denotes the measurement of the ik-th qubit. Since we may make adaptive

measurements, the angles describing the basis of the measurement can depend on the

results of the previous measurements. In general, we may write

φk = fk(n1, n2, . . . , nk−1), (3.21)

where n1, n2, . . . , nk−1 denote the previous k− 1 measurement results and fk is an arbi-

trary computable function evaluated by a classical computer.

This definition of quantum computation seems to be completely different from the

definition given using the quantum circuit model. However, despite the differences,

the measurement-based model of quantum computation is equivalent to the quantum

circuit model, i.e., they can simulate each other efficiently. We can show this using the

following circuit identity

|ψ〉 HP(φ) = n

|+〉 Z X nHP(φ) |ψ〉

, (3.22)

where n is the outcome of the measurement made on the top qubit.

First, let us try to convert a single-qubit gate into an equivalent measurement pattern

on some cluster state. To do this, we can use the lemma, that any single-qubit gate

U ∈ U(2) can be decomposed into a product of the form [26]

U = HP(φ∗m)HP(φ∗m−1) · · ·HP(φ∗1). (3.23)

Therefore, using Eqs. (3.22) and (3.19) we can start to transform the circuit of U into

a sequence of measurements

. . .

|+〉 HP(φ∗1) = n1

|+〉 Z X n1 HP(φ∗2) HP(φ∗m) U |+〉
(3.24)
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Iterating the step above we arrive at the following sequence of measurements

...

. . . . . .

|+〉 M(φ∗1) = n1

|+〉 Z X n1 M(φ∗2) = n2

|+〉 Z X n2 M(φ∗3) = n3

... . . .

|+〉 M(φ∗m) = nm

|+〉 Z X nm U |+〉

(3.25)

This sequence of gates and measurements can also be represented as a string of opera-

tions

X nm
m+1Mm(φ

∗
m)C Zm,m+1 · · ·M3(φ

∗
3)X

n2
3 M2(φ

∗
2)C Z23X n1

2 M1(φ
∗
1)C Z1,2 |+〉

⊗N , (3.26)

where N = m+1. This sequence is like a measurement pattern, but the X and C Z gates

are still in between the measurement operations. Thus, the above sequence is not a

measurement pattern yet. To move all the C Z gates to the right we can make use of the

identity

C Zi, jX i = X i Z jC Zi, j. (3.27)

Moving all the C Z gates to the right leaves us a sequence of local operations on a

cluster state

X nm
m+1Znm−1

m+1 Mm(φ
∗
m)X

nm−1
m Znm−2

m · · ·X n3
4 Zn2

4 M3(φ
∗
3)X

n2
3 Zn1

3 M2(φ
∗
2)X

n1
2 M1(φ

∗
1) |G〉 , (3.28)

where |G〉=
�∏m

i=1 C Zi,i+1

�

|+〉⊗N . Now, we can use the measurement identity

M(φ∗)X nZm = M(φ), where φ = (−1)nφ∗ +mπ, (3.29)

to rewrite Eq. (3.28) as an adaptive measurement pattern on the cluster state |G〉

X nm
m+1Znm−1

m+1 Mm(φm) · · ·M3(φ3)M2(φ2)M1(φ1) |G〉 , (3.30)

where

φk = fk(nk−1, nk−2) = (−1)nk−1φ∗k + nk−2π. (3.31)

This sequence of adaptive measurements can be executed using a one-way computer
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on the linear cluster state |G〉 prepared on m+ 1 qubits. The last qubit remaining after

the measurements will be in the state Znm−1 X nm U |+〉, thus, the above measurement

pattern is equivalent to the single-qubit quantum circuit we started from up to the Pauli

errors Znm−1 X nm which can be corrected for at the end of the calculation.

We shown that by making measurement patterns on a linear cluster state we can

simulate any single-qubit gate. Furthermore, since the gate set

{C Z , all single-qubit gates} (3.32)

is a universal, any quantum circuit can be decomposed into a product of single-qubit and

C Z gates. The existence of such a decomposition makes it possible to construct a cluster

state and a measurement pattern for any quantum circuit, such that the execution of the

measurement pattern on the cluster state simulates the quantum circuit up to known

single-qubit Pauli errors [26,58].

For example, let us consider the two-qubit circuit

|+〉 U1 U2

|+〉 U3 Z U4

; (3.33)

the single-qubit gates U1, U2, U3 and U4 can be replaced with a linear cluster state and

the C Z gate simply becomes an edge between the appropriate qubits, this yields a cluster

state with the following topology

. . . . . .

. . . . . .

, (3.34)

where the black dots denote vertices or qubits and the lines between the vertices are the

edges of the graph G. The cluster state |G〉 can simulate the two-qubit circuit defined

above.

In general, a quantum wire in the quantum circuit model can be translated into a

linear cluster state, and a C Z gate between two qubits can be translated into an edge

interconnecting the linear cluster states corresponding to the qubits on which the C Z

gate acts. On such a cluster state we can always find a measurement pattern which

simulates the desired quantum circuit by measuring the vertices of the cluster state from

left to right. After, the measurements the remaining qubits of the cluster will encode

the final state.
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We can thus conclude that cluster state quantum computation is just as powerful as

the gate-based quantum computation described by the quantum circuit model, since for

every quantum circuit we may construct a cluster state which can simulate the desired

quantum circuit without an excessive resource overhead. But these cluster states are

specific to the quantum circuits they simulate. Thus, the following question arises nat-

urally: Is there a cluster state which can simulate any quantum circuit? The answer to

this question is: Yes.

Resource states which can simulate any quantum circuit with some arbitrary bound

on the number of qubits is called a universal resource state. For example, a cluster state

defined by a two-dimensional lattice can simulate any quantum circuit with less than

n qubits—given the lattice is large enough—where n ∈ N+ is arbitrary integer. Cluster

states based on three-dimensional lattices also allow the implementation of quantum

error correction [24].
While universal resource states would be extremely useful, their generation is noto-

riously difficult. Since the invention of MBQC several theoretical approaches have been

developed to generate them, but to date the generation of large universal cluster states

is still an unsolved problem in the practical sense. Methods for creating photonic cluster

states include linear-optical protocols based on the percolation of lattices [59], and the

use of optically addressable quantum emitters [60].

3.4 Qudits and High-Dimensional Cluster States

In the definition of the quantum circuit model, we made the rather arbitrary decision

to build our quantum computer out of two-level systems—named qubits. Equivalently,

one may define a quantum computer build out of high-dimensional units, d > 2 level

quantum systems called qudits.

The quantum circuit model generalizes easily to qudits. When using qudits to de-

scribe quantum computation, the main difference is that the Hilbert space of an indi-

vidual qudits is larger (d-dimensional), and thus local operations on the qudit register

are represented by unitaries in U(d).
There are several different conventions in use for the generalization of the well-

known Pauli X and Z gates for qudit systems. We will use the following definitions

X =
d−1
∑

n=0

|n⊕ 1〉 〈n| , Z =
d−1
∑

n=0

ωn |n〉 〈n| , (3.35)

where ⊕means addition modulo d andω= exp (i2π/d). One can immediately see that

X and Z are unitary and X d = Z d = 1. However, it is important to note that they are
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not Hermitian for d > 2.

Since the qudit gates X and Z defined above have the same eigenvalues, they satisfy

the similarity relation,

HX H† = Z , (3.36)

where the corresponding basis change operator defines the qudit Hadamard gate

H =
1
p

d

d−1
∑

n=0

d−1
∑

m=0

ωnm |n〉 〈m| . (3.37)

The Hadamard gate is often used to prepare the qudit state

|+〉= H |0〉=
1
p

d

d−1
∑

n=0

|n〉 , (3.38)

which plays a key role in many quantum algorithms.

The controlled X and Z gates are defined as

CX =
d−1
∑

n=0

|n〉 〈n| ⊗ X n, C Z =
d−1
∑

n=0

|n〉 〈n| ⊗ Zn. (3.39)

From Eq. (3.36) it follows that

CX =
�

1⊗H†
�

C Z (1⊗H) . (3.40)

From Eq. (3.39) it follows that CX |n〉 ⊗ |m〉= |n〉 ⊗ |n⊕m〉, thus, one can write

CX †(1⊗ Z)CX |n〉 ⊗ |m〉= CX †(1⊗ Z) |n〉 ⊗ |n⊕m〉

= CX †ωn+m |n〉 ⊗ |n⊕m〉

=ωn+m |n〉 ⊗ |m〉= Z ⊗ Z |n〉 ⊗ |m〉 , (3.41)

where n, m ∈ {0,1, 2, . . . d − 1}, therefore

CX †(1⊗ Zm)CX = Zm ⊗ Zm, (3.42)

and by a similar derivation we can obtain

CX (1⊗ Z−m)CX † = Zm ⊗ Z−m. (3.43)

Equations (3.42) and (3.43) will prove to be useful later when one needs to decompose

unitaries of the form exp (iαZ ⊗ Z).
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Another useful qudit gate is the one-level controlled-Z gate CZ, which is defined by

its action on the basis states |k〉 ⊗ |l〉 as

CZ |k〉 ⊗ |l〉= exp
�

i2πlδk,d−1/d
�

|k〉 ⊗ |l〉 , (3.44)

where δk,l denotes the Kronecker delta.

Similarly to the qubit case the gate one can look for universal gate sets. Important

examples of universal gate sets include the following two [30]:

{C Z , all single-qudit gates}, {C Z , all single-qudit gates}, (3.45)

the latter we can simulate by high-dimensional MBQC.

The definitions of the above gates generalize the properties of the qubit gates—their

Clifford algebra—that we used in the previous section to define a universal one-way

computer operating on cluster states. Now it is possible to extend those definitions and

define high-dimensional cluster state computation without much further explanation.

A high-dimensional cluster state is also associated with a graph G. Each vertex of

the graph corresponds to a qudit and every edge of the graph describes an entangled

pair of qudits. In the high-dimensional case there are actually at least two possible

ways to entangle a qudit pair and still have the nice properties of cluster states. We

may use either C Z or C Z† to entangle two qudits—noting that C Z ̸= C Z† for d > 2.

Allowing the C Z† edges is not necessary to simulate the quantum circuit model, but it

helps translating quantum circuits into cluster states and measurement patterns.

As in the qubit case we have the teleportation identities [61]

|ψ〉 H†P(θ ) = n

|+〉 Z X nHP(θ ) |ψ〉

(3.46)

and

|ψ〉 HP(θ ) = n

|+〉 Z† X nH†P(θ ) |ψ〉

(3.47)

which we can use to translate any qudit quantum circuit into a qudit cluster state with

C Z and C Z† edges and a measurement pattern. In the above equations P(θ ), θ ∈ Rd is

the phase gate defined by the action: P(θ ) |k〉= exp(iθk) |k〉 for qudit levels |k〉.

The translation of quantum circuits into cluster states and measurement patterns

works the same way as in the qubit case. Qudit wires are translated into linear cluster
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states and C Z or C Z† gates become edges interconnecting the corresponding pairs of

linear clusters. An example of this is shown by Fig. 3.4. The figure shows the qudit

cluster state which can implement the two-qudit unitary U = CX P(θ )CX †.

Figure 3.4: Qudit cluster state with the measurement instructions to imple-
ment the two qudit unitary U = CX P(θ )CX †. The black and red edges denote
the C Z and C Z† connections between the physical qudits. The initial state with
its Pauli errors is encoded in the green qudits. The measurement order is indi-
cated by the numbers. After the execution of all the measurements, the final
state is encoded in the red qubits. The arrows show how the qudit states are
teleported from one qudit to the next, and the unitary of each arrow indicates
what transformation should the teleportation perform.
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Results

This chapter describes the two main results of this work. The first result is on the the

linear-optical synthesis of locally optimal many-qudit gates acting on multi-rail encoded

qudits. The second result is about the resource efficient solution of d-ary optimization

problems using high-dimensional cluster states encoded by multi-rail photonic qudits.

The second result is illustrated on the k-coloring problem. This chapter is based on the

author’s manuscript titled: "Efficient qudit based scheme for photonic quantum com-

puting". arXiv:2302.07357, 2023.

4.1 Multi-Rail Encoding

The multi-rail encoding is the generalization of the dual-rail encoding introduced in

Sec. 3.2. A single qudit is encoded into d number of optical modes by a single photon.

If the d modes are labeled with indices i0, i1, . . . id−1

||k〉〉I = |0〉i0 |0〉i1 · · · |1〉ik · · · |0〉id−1
, (4.1)

where I is the ordered d-tuple (i0, i1, . . . , id−1) and k ∈ {0,1, . . . , d − 1} denotes the

possible qudit levels. The ||〉〉 notation is used to denote the logical qudit states and the

simple kets |〉 denote photon number states. The tensor product notations |i〉a ⊗ | j〉b,

|i〉a | j〉b and |i, j〉a,b are used interchangeably.

We may consider the effect of a linear-optical transformation S ∈ U(d) on modes in

the tuple I encoding a single qudit

�

a†
i0

, a†
i1

, · · · , a†
id−1

�

→
�

a†
i0

, a†
i1

, · · · , a†
id−1

�

S (4.2)

on the arbitrary state ||ψ〉〉I =
∑d−1

k=0αk ||k〉〉I representing an element of the single-qudit
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Hilbert spaceH . The state ||ψ〉〉I transforms as follows

||ψ〉〉I →
�

a†
i0

, a†
i1

, · · · , a†
id−1

�

S











α0

α1
...

αd−1











|0〉=
d−1
∑

k=0

α′k ||k〉〉I ∈H , (4.3)

where α′k =
∑d−1

l=0 Sklαl . Thus, the linear-optical transformation S acts as single-qudit

gate onH . The corollary of this is that we may implement any single-qudit gate using

a network of beamsplitters and phase shifters. The required configuration of beamsplit-

ters and phase shifters can be calculated using the Clements decomposition [62].
On the other hand, entangling two-qudit gates cannot be realized using only linear-

optical networks. The proof of this statement is essentially the same as the proof pre-

sented in Appendix A. However, we can synthesize two-qudit gates using the nonlinear

phase shift operation as shown by Fig. 4.1. The construction shown by the figure is the

generalization of the KLM non-deterministic C Z gate (see Sec. 3.2).

Figure 4.1 shows a linear-optical implementation of the non-deterministic C Z gate.

It is important to note that the nonlinear phase shifts require ancilla modes and PN-

RDs to implement. This decomposition requires 2(d − 1) symmetric beamsplitters and

the same number of nonlinear phase shifts. Since the success probability of a nonlin-

ear phase shift is at most 1/4 (see Appendix B), the success probability of the non-

deterministic C Z constructed from nonlinear phase shifts is bounded from above by

1/16d−1. This means that the success rate gets exponentially small with increasing d.

Figure 4.1: Realization of the CZ gate entangling two qudits defined by the
multi-rail encoding. The red and blue segments indicate symmetric beamsplit-
ters with angles θ = ±π/4 and φ = 0 (red is plus and blue is minus), and the
white boxes denote nonlinear phase shifts with angles ϕk = 2πk/d.
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4.2 Locally Optimal Many-Qudit gates

The immediate question regarding the construction presented by Fig 4.1 is that, can

we achieve a better success rate? Or more generally, what is the optimal way—optimal

in success probability—to implement a non-deterministic entangling gate using linear

optics and PNRDs?

It turns out answering these questions are fundamentally difficult—unless an un-

likely breakthrough is made in the complexity theory of permanents [53]. For the qubit

case, these questions were addressed in Ref. [63], where they gave locally optimal solu-

tions for many-qubit gates using numerical optimization techniques. In this section the

methods of Ref. [63] are developed further to find locally optimal solutions for entan-

gling many-qudit gates acting on multi-rail encoded qudits.

A qudit register of N -qudits can be encoded into d · N different optical modes. The

qudit register’s Hilbert space is just the following subset of the Fock space

H =

(

d−1
∑

k0,k1,...,kN−1=0

αk0,k1,...,kN−1
||k0〉〉I0

||k1〉〉I1
· · · ||kN−1〉〉IN−1

�

�

�

�

�

αk0,k1,...,kN−1
∈ C

)

, (4.4)

where I0, I1, . . . , IN−1 are disjoint d-tuples containing the labels of d ·N different optical

modes which encodeH .

In order to linear-optically synthesize entangling qudit gates we can use the gen-

eral interferometer configuration shown by Fig. 4.2. The input computational state

|ψin〉c ∈H is first transformed by the linear-optical transformation S along with the an-

cilla state |1〉⊗Na |0〉⊗Nv , then the ancilla modes are measured using PNRDs. If S is chosen

correctly |ψout〉c ∈ H is prepared after the ancilla measurement with some probability

P, where |ψout〉c is related to |ψin〉c by a unitary transformation of the qudit register

T :H →H .

We may represent the state of the qudit register as a complex vector with dN com-

ponents, hence T can be represented as a dN × dN unitary matrix corresponding to a

entangling N -qudit gate. If |ψin〉=
∑dN−1

k=0 αk ||k〉〉 and |ψout〉=
∑dN−1

k=0 βk ||k〉〉 then











β0

β1
...

βdN−1











=











T0,0 T0,1 . . . T0,dN−1

T1,1 T1,2 . . . T1,dN−1
...

...
. . .

...

TdN−1,0 TdN−1,1 . . . TdN−1,dN−1





















α0

α1
...

αdN−1











, (4.5)

where ||k〉〉 ∈ {||k0〉〉I0
||k1〉〉I1

· · · ||kN−1〉〉IN−1
| k0, k1, . . . , kN−1 ∈ {0, 1, . . . , d − 1}}.

Unfortunately, an entangling many-qudit gate cannot be implemented using a linear-
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Figure 4.2: Configuration of an interferometer for a general nonlinear opera-
tion. The input many-qudit state is encoded in the top computational modes
and the ancilla modes are shown below them. The ancilla modes are measured
using PNRDs and the measurement result is used to determine whether the op-
eration was successful or not. In the event of success, the computational output
is encoded in the many-qudit state |ψout〉c.

optical transformation S, such that |ψout〉c = U(S) |ψin〉c for any |ψin〉c ∈ H . However,

we may write down a weaker equality which holds for any |ψin〉c ∈H for some linear-

optical transformation S

U(S) |ψin〉c |1〉
⊗Na |0〉⊗Nv = ξ

p
P |ψout〉c |1〉

⊗Na |0〉⊗Nv + other ancilla projections, (4.6)

given the numbers Na and Nv are large enough. Above P > 0 is the probability of

measuring the ancilla state |1〉⊗Na |0〉⊗Nv and ξ is an arbitrary global phase (|ξ| = 1).

By preparing the output state on an ancilla projection the gate T can be implemented

non-deterministically via postselection with success probability P.

From Eq. (4.6) the relation between the matrix T and matrix S can be given as

follows






〈ñ|U(S) ||m〉〉 |1〉⊗Na |0〉⊗Nv = ξ
p

PTn,m, if ∃n : |ñ〉= ||n〉〉 |1〉⊗Na |0〉⊗Nv

〈ñ|U(S) ||m〉〉 |1〉⊗Na |0〉⊗Nv = 0 otherwise,
(4.7)

where |ñ〉 = |n〉 |1〉⊗Na |0〉⊗Nv and |n〉 = |n1, n2, . . .〉 is an N -photon occupation number

state
�∑

k nk = N
�

defined on the modes encoding the computational space. The nota-

tion can be simplified if we introduce the non-square matrices T̃ and Ũ

T̃n,m =







Tn,m if ∃n : |n〉= ||n〉〉

0 otherwise
(4.8)
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and

Ũn,m = 〈ñ|U(S) ||m〉〉 |1〉
⊗Na |0〉⊗Nv , (4.9)

where n ∈
�

n |
∑

k nk = N
	

and m ∈ {0,1, . . . , dN −1}. With this new notation Eq. (4.7)

can be rewritten as

Ũn,m = ξ
p

P T̃n,m. (4.10)

If the matrix elements Ũn,m are expanded using the permanent formula given in

Eq. (2.46), then Eq. (4.10) becomes a system of multivariate polynomial equations

whose unknown variables are the matrix elements of S. This system of polynomial

equations cannot be solved analytically even for the simplest entangling gates; there-

fore, a numerical approach is necessary.

The problem of for solving the matrix S can be encoded into the optimization prob-

lem defined by the cost function

L = F +λP +σC , (4.11)

where

F =
|Tr
�

Ũ† T̃
�

|2

Tr
�

Ũ†Ũ
�

Tr
�

T̃ † T̃
� , P =

Tr
�

Ũ†Ũ
�

Tr
�

T̃ † T̃
� , C = −Tr

¦

�

S†S − 1
�2©

(4.12)

and λ,σ are non-negative real constants. The value of F gives the fidelity of the gate

implementation; the Cauchy-Schwarz inequality implies that F is equal to 1 if and only

if Eq. (4.10) holds for some probability P. The C term in L simply ensures that S is

unitary. Therefore, local maxima of L correspond to locally optimal implementations of

the many-qudit gate T—optimal in the success probability P.

The optimization problem defined by L was solved using a trust-region method [64].
The optimization process went as follows. First the problem was solved using λ = 0.

Once a solution with F = 1 and C = 0 was found λ was gradually increased to the

largest possible value for which the solution still converged to F = 1.

At the beginning Na and Nv were chosen such that the system of equations for the

matrix elements of S would be under-defined. After finding a solution Na and Nv would

be decreased until no solution with F = 1 and C = 0 could be found. This process was

carried out for the qutrit C Z and C Z gates (see Table 4.1).

There is a significant improvement in the success rate when the gates are optimized.

These optimized gates could be used to non-deterministically prepare entangled pho-

ton states which are necessary for many measurement-based architectures like optical

cluster state computing. In the following sections we will look at how high-dimensional
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cluster states might be used in photonic qudit schemes in general and in particular for

the k-coloring problem.

T Pnaive P Na Nv

CZ (qubit) [65] 0.0625 0.0740 2 0
CZ (qutrit) ≈ 0.0016 0.011 3 3
CZ (qutrit) ≈ 0.00000256 0.000507 5 4

Table 4.1: Optimized two-qutrit gates. The probability Pnaive is the gate success
rate when the gates are decomposed into many nonlinear phase shifts. The
probability P is the best success rate found after performing the optimization
process for many different randomly selected initial conditions.

4.3 Graph Coloring With Qudit Cluster States

Graph coloring is one of the most studied topics of graph theory because of its appli-

cations in solving scheduling problems and compiler theory [46, 47]. Coloring refers

to the assignment of labels (colors) from a label set to the vertices of a graph G. This

assignment defines a map C : V → L, where V is the set containing the vertices of G

and L is the label set.

Arbitrarily ordering the vertices of G allows us to represent a coloring as string of

labels: If we call the i-th vertex vi ∈ V and its assigned color C(vi) = li ∈ L, then the

string l = l1l2l3 . . . l|V | completely characterizes the coloring C . The k-coloring problem

of a graph is to decide whether the vertices of the graph can be colored using k colors,

such that no adjacent vertices have the same color. The smallest k for which the k-

coloring is possible for a given graph is called the chromatic number of the graph. The

k-coloring problem of an arbitrary graph is known to be NP-complete [66–68].

It was shown that there are exponential time quantum algorithms which can solve

the k-coloring problem faster than the best classical algorithms known for the prob-

lem [69], and even certain heuristic variational quantum algorithms for a similar prob-

lem have been hinted to outperform classical methods [70]. Therefore, one might con-

jecture that a heuristic graph coloring algorithm based on the quantum approximate

optimization algorithm (QAOA) [45] might have an edge over classical computers. In

the text below a qubit and a high-dimensional version of the QAOA algorithm for solving

the k-coloring problem are presented.
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Qubit algorithm

The k-coloring problem can be reformulated as a combinatorial optimization prob-

lem where the goal is to minimize the number of edges connecting vertices with

identical colors by searching through the possible |V | length strings of the label set

L = {0,1, 2, . . . , k−1}. On qubit-based architectures, binary optimization problems can

be solved using QAOA. Encoding the strings of L as bit-strings means that we can use

QAOA to solve the k-coloring problem as well; such a QAOA type of approach for the

k-coloring (and the related k-SAT problem) has been studied in Refs. [71–75].

The encoding of colorings into bit-strings is most easily done via the one-hot encod-

ing, this means that the strings of L are encoded into N = |V |·k bits, where each set of k

consecutive bits encodes the color of a vertex. The color of the i-th vertex li is indicated

by the i-th set of k bits of the form 00 . . . 010 . . . 00, where the li-th bit is flipped and the

rest of the k bits is zero. We will denote the j-th bit of the i-th set of k bits by x i, j.

Minimizing the cost function f : {0, 1}N → R

f (x) = C
|V |
∑

n=1

�

1−
k−1
∑

i=0

xn,i

�2

+ D
|V |
∑

n=1

|V |
∑

m=1

k−1
∑

i=0

Anm xn,i xm,i, (4.13)

is equivalent to finding a solution to the k-coloring problem, where x is a bit-string

of length N , Anm are the matrix elements of the adjacency matrix of G and C and D

are arbitrary positive real constants. The first term in Eq. (4.13) weighted by C is a

penalty term, since not every bit-string of length N corresponds to a coloring. For every

n ∈ {1,2, . . . , |V |} exactly one of the k bits xn, j, where j ∈ {0, 1, . . . , k− 1}, has to equal

one in order for x to encode a coloring. The remaining term simply counts the number

of edges that connect vertices with the same color.

To construct the QAOA cost Hamiltonian we can use the recipe

HC =
∑

x∈{0,1}N
f (x) |x〉 〈x| , (4.14)

where |x〉 is the computational state

|V |
⊗

n=1

� k−1
⊗

i=0

|xn,i〉
�

.

Substituting Eq. (4.13) into Eq. (4.14), the cost Hamiltonian becomes

HC =
C
4

|V |
∑

n=1

�

21−
k−1
∑

i=0

�

1− Zn,i

�

�2

+
D
4

|V |
∑

n=1

|V |
∑

m=1

k−1
∑

i=0

Anm

�

1− Zn,i

� �

1− Zm,i

�

, (4.15)
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where Zn,i is the Pauli Z matrix acting on the (k · (n − 1) + i)-th qubit labeled by the

tuple (n, i). Obtaining the ground state of HC is the same as finding a bit-string that

minimizes the cost function f [72].

QAOA minimizes the expectation value 〈ψ (α,β)|HC |ψ (α,β)〉, where

|ψ (α,β)〉=

� p
∏

n=1

eiαnHM eiβnHC

�

|+〉⊗N , (4.16)

α,β ∈ Rp and

HM =
|V |
∑

n=1

k−1
∑

i=0

Xn,i

is the mixing Hamiltonian, where p denotes the number of QAOA layers.

Preparation of |ψ (α,β)〉 requires the implementation of two parameterized unitary

UM(α) = eiαHM and UC(β) = eiβHC . UM can be realized using single qubit rotations and

only UC requires entangling gates. UC can be further separated into the product of two

unitaries, where one of the unitary requires only single qubit phase gates and the other

unitary requires only controlled rotations.

This can be achieved by separating the cost Hamiltonian into a non-interacting and

an interacting part, HC = H0 +H1, where

H1 =
C
2

|V |
∑

n=1

k−1
∑

i< j=0

Zn,i Zn, j +
D
2

∑

{n,m}∈E

k−1
∑

i=0

Zn,i Zm,i. (4.17)

In Eq. (4.17) E denotes the set containing the edges of the graph. The Hamiltonians H0

and H1 commute since they only contain Pauli Z matrices, thus

UC(α) = eiαH0 eiαH1 . (4.18)

The unitary eiαH1 can be decomposed into the product of |V |
�k

2

�

+ k|E| number of

controlled rotations

eiαH1 =
|V |
∏

n=1

�

k
∏

i< j=1

CXn,i;n, j Pn, j (αC/2)CXn,i;n, j

�

×
∏

{n,m}∈E

�

k−1
∏

i=0

CXn,i;m,i Pm,i (αD/2)CXn,i;m,i

�

, (4.19)

where Pn, j(α) = eiαZn, j is the phase gate acting on the qubit labeled by the pair of indices

(n, j) and CXn,i;n, j is a controlled NOT gate between the control qubit (n, i) and the target

qubit (n, j). Eq. (4.19) can be derived using the identity eiαZ⊗Z = CX (1⊗ P(α))CX .
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The physical realization of the unitary eiαH1 requires by far the most-amount of phys-

ical resources compared to the other parts of the algorithm, since only this part needs

entangling gates. Therefore, focusing only on the implementation details of eiαH1 can

give us a good lower bound on the resources necessary to carry out the QAOA.

Graph coloring using qudits

When using qudits with dimension d = k, there is a one-to-one correspondence between

the computational basis and the possible graph colorings with k colors via the mapping

l1l2l3 . . . l|V |→ |l1〉 ⊗ |l2〉 ⊗ |l3〉 ⊗ · · · ⊗ |l|V |〉 , (4.20)

where li ∈ {0, 1,2, . . . , k− 1}. This means that the coloring problem can be formulated

as an unconstrained d-ary optimization problem which can be solved by the QAOA

generalized to qudits [76–78]. Because the optimization problem is unconstrained, the

decomposition of the QAOA layers will turn out to be simpler due to lack of penalty

terms.

The QAOA for qudits is very similar to the qubit version only the form of the mixing

and cost Hamiltonian is different. The mixing Hamiltonian is still a simple sum of single-

qudit terms, e.g., the r-nearby-values single-qudit mixer HM =
∑|V |

n=1

∑r
i=1

�

X i
n + X †

n
i
�

as

in Ref. [77], and the cost Hamiltonian is

HC =
|V |
∑

n=1

|V |
∑

m=1

k−1
∑

i=0

AnmZ i
nZ k−i

m =
∑

{n,m}∈E

k−1
∑

i=0

Z i
nZ k−i

m , (4.21)

where Zn is the qudit Pauli Z gate acting on the n-th qudit and Anm are the matrix

elements of the adjacency matrix of the graph G.

The ground states of the Hamiltonian HC correspond to optimal k-colorings of G.

Similarly to the qubit case, we can decompose the unitary UC(α) = eiαHC into |E| number

of controlled qudit rotations

eiαHC =
∏

{n,m}∈E

CXn;mPm(α)CX †
n;m, (4.22)

where Pm(α) is a single-qudit phase gate which acts on the m-th qudit the following way

Pm(α) |x〉= eiα
∑k−1

n=0 Zn
m |x〉=







eiαk |x〉 if xm = 0,

|x〉 otherwise.
(4.23)
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Cluster states for the qubit and qudit implementations

Having established all the necessary techniques to implement the QAOA solution of

the k-coloring problem both using qubits and qudits, we can now compare the physical

resources used by the two methods. A single layer of the qudit QAOA algorithm without

the mixing part can be executed on the qudit cluster state Cd constructed from many

copies of Rd , where Rd is a cluster with the topology depicted by Fig. 3.4 made up by

d-dimensional qudits. When the number of colors is k, one has to use d=k-dimensional

qudits for the algorithm. The construction of Cd is shown by Fig. 4.3. The construction

of C2, the qubit equivalent of Cd , works differently. In the qubit case, one must add

k copies of R2 for each edge of G and k(k − 1)/2 copies for each node of G. These

construction rules follow from the decompositions in Eqs. (4.19) and (4.22).

Figure 4.3: Qudit cluster state for a single layer of the qudit QAOA. Each edge of
G corresponds to a controlled qudit rotation in the decomposition of exp(iαHC)
described by Eq. (4.22). Thus one can chain many copies of Rd to form the
complete qudit cluster. The two input nodes of Rd are merged with two output
nodes of the unfinished cluster state based on the topology of G. Each row of
physical qudits represents a logical qudit labeled by the numbers. Each logical
qudit encodes the color of a node in G.

The number of qudits in Cd is approximately

|Cd | ≈ |Rd | · |E|= 8|E|, (4.24)

where |E| is the number of edges in G, which is equal to the number of copies of Rd used

to build Cd , and |Rd | is the number of qudits in Rd . The approximation can be made

exact by carefully considering the precise sequence of node additions and removals in

the cluster growing process, however, for large enough graphs Eq. (4.24) provides a

highly accurate estimate. Similarly, the number of qubits in C2 is

|C2| ≈ |R2| ·
��

k
2

�

|V |+ k|E|
�

= 8
�

k
2

�

|V |+ 8k|E|. (4.25)
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In general, the ratio |C2|/|Cd | is strictly larger than k, and in the large dense graph

limit, when |E| ≫ |V |, this ratio approaches k. This is illustrated by Fig. 4.4 for Erdős-

Rényi random graphs. If one uses the multi-rail encoding described in Sec. 4.2, the

photon numbers of the cluster states is equal to their size. The number of optical modes

required to encode the cluster state Cd is d|Cd | including the qubit case d = 2. Thus,

the number of photons decreases by a k-fold and the number of optical modes halves,

when using multi-rail qudits instead of KLM qubits to encode the k-coloring problem.

(a) (b)

Figure 4.4: (a) Number of physical qubits and qudits versus the number of
edges in G, the graph to be colored. |C2| is the number of physical qubits in
the qubit cluster state implementation of exp(iαH1), where H1 is defined by
Eq. (4.17). |Cd | is the number of physical qudits in the cluster state implemen-
tation of exp(iαHC), where HC is defined in Eq. (4.21). (b) Ratio of the qubit
and qudit cluster sizes when |V | = 500 and k = 3, where |V | is the number of
vertices in G and k is the number of colors used for the coloring.
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Conclusion

Nanofabrication techniques can integrate configurable linear-optical elements, PNRDs

and single-photon sources onto a single chip in a scalable manner, for this reason, LOQC

is one of the most promising directions towards scalable quantum information process-

ing. In Chap. 4 two results were presented related to high-dimensional LOQC. First,

the linear-optical synthesis of non-deterministic many-qudit gates was discussed, then

the high-dimensional cluster state implementation of the k-coloring QAOA ansatz was

introduced.

Single-qudit gates and measurements in LOQC can be done with relative ease, how-

ever, entangling gates require ancilla resources and postselection. Section 4.2 presented

a numerical approach which can find linear-optical implementations of many-qudit

gates with locally optimal probabilities. Using this technique locally optimal solutions

were found for the C Z and C Z qutrit gates. Although, the synthesized two-qutrit gates

are locally optimal, their success probability is low.

There seems to be a relation between the number of ancilla photons and the success

probability of an optimal gate. The observation is that the more ancilla photons are

needed to find a solution, the optimal probability gets excessively smaller. For this

reason, for d > 3, linear-optical implementations of entangling many-qudit gates are

unlikely to be practical. But for d = 3, the linear-optical implementation of C Z or C Z

might be used for the linear-optical preparation of qutrit cluster states.

The method presented for the optimization of qudit gates works surprisingly well,

despite the complexity of the equations (4.10). However, there are several questions to

be answered about the mathematics of solving these equations. One of the most impor-

tant questions is about the global maximum of the success rate. The global maximum

seems to depend on the gate itself, e.g., the C Z and C Z gates have differences of several

magnitudes in their local maxima, thus, it is unlikely they have the same global maxima.

Another factor seems to be the configuration of the ancilla resources. In Sec. 4.2 only
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the ancilla configuration |1〉⊗Na |0〉⊗Nv was considered, however, it is not clear whether

starting or finishing with this ancilla configuration is the optimal way to implement a

qudit gate.

The other topic of this thesis was the application of high-dimensional cluster state

quantum computing to solve d-ary optimization problems with photonics. In Sec. 4.3

this application of qudit cluster states was illustrated on the k-coloring problem. To

color any graph with k colors, either a qudit—with dimension d=k—or a qubit cluster

state can be constructed, such that the former can implement the high-dimensional

version of the k-coloring QAOA ansatz, and latter can implement the binary version of

the k-coloring QAOA ansatz.

When these qudit and qubit cluster states are compared for large, dense graphs, the

qudit cluster states encoded by the multi-rail encoding require k-times fewer number

of photons and half as many optical modes than what it is needed to encode the cor-

responding qubit cluster states with dual-rail qubits. This result illustrates how high-

dimensional cluster state computation could be used to reduce the resource require-

ments of certain algorithms.

The real difficulty of cluster state computation is in the generation of the cluster

states, thus, results involving cluster states rely on the assumption that they can be

generated efficiently. In a recent work it was shown that one can produce this type

of high-dimensional cluster states deterministically using quantum emitters [79]. The

methods shown in Ref. [79] combined with the result of this work give a convincing

argument for the usefulness of multi-rail encoded high-dimensional cluster states.
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Appendix A

Proof: Linear Optics Cannot Entangle

Dual-Rail Qubits

Let us consider two dual-rail qubits and denote the creation operators of the first qubit

as a†
0 and a†

1, and the creation operators of the second qubit as b†
0 and b†

1. Then an

arbitrary two-qubit state is the form

α0 ||0〉〉a ⊗ ||0〉〉b +α1 ||0〉〉a ⊗ ||1〉〉b +α2 ||1〉〉a ⊗ ||0〉〉b +α3 ||1〉〉a ⊗ ||1〉〉b =
�

α0a†
0 b†

0 +α1a†
0 b†

1 +α2a†
1 b†

0 +α3a†
1 b†

1

�

|0〉=
�

a† ⊗ b†
�

·α |0〉 , (A.1)

where we introduced the vectors a† =
�

a†
0, a†

1

�

, b† =
�

b†
0, b†

1

�

and ⊗ denotes the Kro-

necker product of vectors. Using block matrices, a general linear-optical transformation

of the four optical modes is written as follows

�

c†, d†
�

=
�

a†, b†
�

S, where S =

�

S11 S12

S21 S22

�

∈ U(4), (A.2)

and Si j ∈ C2×2. Since S is unitary, we must have also

S11S†
11 + S12S†

12 = 1, (A.3)

S21S†
21 + S22S†

22 = 1, (A.4)

S11S†
21 + S12S†

22 = 0. (A.5)
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The two-qubit state after the transformation is

�

c† ⊗ d†
�

·α=
��

a†S11

�

⊗
�

a†S12

�

+
�

a†S11

�

⊗
�

b†S22

�

+
�

b†S21

�

⊗
�

a†S12

�

+
�

b†S21

�

⊗
�

b†S22

�	

·α.

(A.6)

However, Eq. (A.6) must have the form
�

a† ⊗ b†
�

·α′ to stay inside the two-qubit Hilbert

space. This implies, that the terms
�

a†S11

�

⊗
�

a†S12

�

and
�

b†S21

�

⊗
�

b†S22

�

must vanish

�

a†S11

�

⊗
�

a†S12

�

= 0, (A.7)
�

b†S21

�

⊗
�

b†S22

�

= 0. (A.8)

Taking the expectation value of Eq. (A.7) with a coherent state |γ,δ〉 we get

�

γ†S11

�

⊗
�

δ†S12

�

= 0, for all γ,δ ∈ C2, (A.9)

where |γ,δ〉 is the coherent state which satisfies the following equations

ai |γ,δ〉= γi |γ,δ〉 , (A.10)

bi |γ,δ〉= δi |γ,δ〉 . (A.11)

Equation (A.9) implies that either the vector γ†S11, or δ†S12 must be equal to the zero

vector for all γ,δ ∈ C2. This further implies that either the matrix S11 or S12 must be the

zero matrix. If S11 = 0, then Eqs. (A.3), (A.4) and (A.5) imply that S12 is unitary, and

thus S22 vanishes as well. Similarly, if S12 is zero, then S11 is unitary and S21 vanishes.

Finally, we conclude that S must be either

�

S11 0

0 S22

�

or

�

0 S12

S21 0

�

. (A.12)

The first case corresponds to the two-qubit gate S11 ⊗ S22, and the second case corre-

sponds to the two-qubit gate SWAP(S12⊗S21). It is easy to see, that none of these gates

are entangling, since if they act on a tensor product state the result will be also a tensor

product state. Thus, it is impossible to entangle dual-rail qubits using only beamsplitters

and phase shifters.
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Appendix B

Linear-Optical Synthesis of Nonlinear

Phase Shift

We may use two ancilla modes and an additional photon to synthesize the nonlinear

phase shift NSφ : α0 |0〉1+α1 |1〉1+α2 |2〉1→ α0 |0〉1+α1 |1〉1+ eiφα2 |2〉1 for any angle

φ. Since the φ = 0 case is trivial, it is the identity operation, we need only consider the

φ ̸= 0 case.

Let us introduce three modes: the target mode a†
1 on which we want to perform NSφ,

and two ancilla modes a†
2 and a†

3. At the beginning of the synthesis a single photon is

injected into one of the ancilla modes so that the state

|ψ〉in = (α0 |0〉1 +α1 |1〉1 +α2 |2〉1)⊗ |10〉23 =
�

α0a†
2 +α1a†

1a†
2 +

α2p
2

a†
1

2
a†

2

�

|0〉 (B.1)

enters the linear-optical elements, where α0,α1,α2 are arbitrary complex coefficients.

The linear optics should be configured such that the output state is

|ψ〉out = ξ
p

P(α0 |0〉1 +α1 |1〉1 + eiφα2 |2〉1)⊗ |10〉23 + other ancilla projections, (B.2)

where ξ is a global phase (|ξ|= 1) and P > 0 is the probability of measuring the ancilla

state |10〉23. This way, if we were to measure the ancilla state |10〉23, then we would

successfully perform NSφ on the target mode.

We can rewrite Eq. (B.2) in terms of the matrix S ∈ U(3) which transforms the

creation operators of the modes as
�

a†
1, a†

2, a†
3

�

→
�

a†
1, a†

2, a†
3

�

S. After the substi-

tution of the transformed operators and collecting the relevant terms the output state
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are of the form

|ψ〉out =
�

α0S22 |0〉1 +α1(S11S22 + S12S21) |1〉1 +α2(S
2
11S22 + 2S11S12S21) |2〉1

	

⊗|10〉23

+ other ancilla projections. (B.3)

Comparing Equations (B.2) and (B.3) we find that the following equations should hold

for the matrix elements of S

S22 = ξ
p

P, (B.4)

S11S22 + S12S21 = ξ
p

P, (B.5)

S2
11S22 + 2S11S12S21 = ξ

p
Peiφ (B.6)

along with the unitary conditions S†S = SS† = 1.
Substituting Eqs. (B.4), (B.5) and (B.6) into each other one finds that

S2
11 − 2S11 + eiφ = 0, (B.7)

and since |S11| ≤ 1 because S is unitary, we must have S11 = 1 −
p

1− eiφ. From the

unitary conditions one can deduce that S must have the form

S11 = 1−
p

1− eiφ, |S12| ∈
�

0,
Æ

1− |S11|2
�

, |S13|=
Æ

1− |S11|2 − |S12|2,

S21 =
ξ
p

P(1− S11)
S12

, S22 = ξ
p

P, S23 =
ξ
p

P
�

|S11|2 − |S12|2 − S∗11

�

S12S∗13

,

S3i =
∑

k,l

εiklS
∗
1kS∗2l ,

where

P =





�

�|S11|2 − |S12|2 − S∗11

�

�

2

|S12|2 (1− |S11|2 − |S12|2)
+
|1− S11|2

|S12|2
+ 1





−1

. (B.8)

The success probability of the nonlinear phase shift is given by P defined in Eq.

(B.8), where P is entirely determined by the angle φ and by the magnitude |S12|, thus

one may find the best success rate for a fix angle φ by finding the maximum

Pbest = max
{|S12|}

P. (B.9)

Figure B.1 shows the best probabilities for every angle. The global maximum, P = 1/4

is achieved when φ = π. This case corresponds to the nonlinear sign flip which can be

used to implement the C Z gate non-deterministically with a success rate of 1/16.
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Figure B.1: Success rate of the nonlinear phase shift NSφ when synthesized
using linear optics and PNRDs.

60



Appendix C

The Bloch Sphere Representation of

Qubit States

The state of the qubit |ψ〉 most easily represented as a linear combination

|ψ〉= α |0〉+ β |1〉 , α,β ∈ C (C.1)

where {|0〉 , |1〉} is an orthogonal basis of the qubit’s Hilbert space. However, this rep-

resentation is actually redundant if |ψ〉 represents a physical state.

First of all, a physical state should be normalized such that |α|2 + |β |2 = 1, thus we

can parameterize α and β using three angles φ1,φ2 ∈ [0,2π) and θ ∈ [0,π].

|ψ〉= eiφ1 cos
θ

2
|0〉+ eiφ2 sin

θ

2
|1〉 . (C.2)

Also, |ψ〉 is physically indistinguishable from the state cos θ2 |0〉+ ei(φ2−φ1) sin θ
2 |1〉, thus,

we may eliminate an other angle and represent |ψ〉 using only two angles φ ∈ [0,2π)
and θ ∈ [0,π]

|ψ〉 ≡ cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 . (C.3)

Using the two angles θ and φ one can plot the state on the surface of a sphere the

following way

p=







〈ψ|X |ψ〉
〈ψ|Y |ψ〉
〈ψ|Z |ψ〉






=







sinθ cosφ

sinθ sinφ

cosθ






∈ S2 ⊂ R3, (C.4)

where X , Y and Z are the Pauli matrices. This sphere is called the Bloch sphere and its

surface contains all possible physical qubit states. For illustration see Fig. C.1.

In the Bloch sphere representation single-qubit gates gain a new meaning. Each
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single-qubit gate is a rotation on the Bloch sphere. For example, the Pauli X , Y , Z gates

are the generators of the rotations around the X , Y , Z axis

Figure C.1: The state |ψ〉 = cos θ2 |0〉 + eiφ sin θ
2 |1〉 represented on the Bloch

sphere.
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